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Abstract

This paper summarizes with a number of new results, a variety of functional equations which arise
from the enumerations of planar maps. A few applications are also discussed.

1. Introduction

1.1. A map M here i meant a permutation # on a set & with the following
conditions.

Condition 1. The set ' = | J e x2'x, where # x ={x, ax, Bx,afx} is called a quadricell,
X={x1,X3,...,Xn}, and H ={1,a, B,2B} is the Klein transformation group of four
elements.

We usually write £ =2, 45(X) when it is not necessary to notify X,« and B.
Condition 2. The permutation ¢ on 2 has to obey the following two axioms.
Axiom 1. a ¢ = ¢ lo.

Axiom 2. The group ¥, generated by J={u, B, #} is transitive on Z.

Thus, we may write the map M =(2, 4(X), #). From Axiom 1, &, f are asymmetric,

ie. (X p(X), F)#(Xp o(X), F). Generally, for a map M=(Z, 4(X), #), it is not

necessary that (%5 ,(X), #) is also a map because for f, it is not guaranteed to have

Correspondence to: Yanpei Liu, Institute of Applied Mathematics, Academia Sinica, Beijing, China.
*Supported by the National Natural Science Foundation of China.

0012-365X/93/$06.00 © 1993—Elsevier Science Publishers B.V, All rights reserved
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Axiom 1. In fact, Axiom 1 allows us to define the vertices of a map as the pairs of
conjugate orbits of # on .

1.2. Foramap M =(%, 4(X), #) given, from the asymmetry of « and B, we may call
a the first operator and f, the second. It is easy to show that M*=(Z'; .(X), £,5) is
also a map with f as the first operator and o, the second. We call M* the dual map of
M. From the duality, we may define the faces of M to be the corresponding vertices of
M*, In addition, the edges of a map M =(Z, 4(X), #) are defined to be the quadricells
Hx={x,ax,px,afx} for xeX. For an edge {x,ax, fx,afx},{x,ax} and {fx,afx},
{x, Bx} and {ax,afx} as well, are said to be semi-edges. Let v, ¢, and ¢ be the number
of vertices, edges, and faces of M, respectively. The number

E(M)=v—c¢+¢

is said to be the Eulerian characteristic of M.

1.3. For a map M =(Z, 4(X), #), if it satisfies the following axiom, then we call it
orientable; otherwise, nonorientable.

Axiom 3. The group ¥y generated by L={af, #} is not transitive on %, 5(X).

In fact, if ¥ is not transitive, then it will have exactly two orbits on Z, 4(X). When
M is orientable, we always have E(M)<2 and E(M)=0 (mod2). If E(M)=2-2p,
then M is a map on the surface of genus p>0.If p=0, then M is said to be planar. Here
we mainly discuss planar maps. When M is nonorientable, we always have E(M)<0.
If ECM)=1—gq, then M is a map on the nonorientable surface of genus g. When g=1,
the surface is the projective plane.

1.4. Amap M =(Z, 4(X), #)is said to be rooted if an element of &, 4(X)is chosen to
be the one specially marked, which is called the root. We denote the root by r and the
rooted map by M =(Z(X), #). In a rooted map, the vertex, the edge, and the face
which involve the root are said to be the root-vertex, the root-edge, and the root-face
denoted by v,, ¢, and f,, respectively. For two rooted maps MY =(Z¥)(X ), #,) and
MY =(ZY0(X,), #,), if there exists a bijection :2¥P(X,)—=2T)(X,) with
7(ry)=r, such that the diagrams

FEx,) > a(x,)
Yll l)‘z
Zi(X,) ——> TAX,)

are commutative for y, =y, =a, for y; =y,=4, and for y, = _#, and y,=_#,, then we
say that MYy" and M"? are isomorphic, denoted by M{"~ M$?. We only consider
rooted maps here and all isomorphic maps as the same.

6042
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1.5. In amap M, the valency val(v) of a vertex v is the number of semi-edges involved
in v». For a map M given, a vertex partition of the non-root-vertex set ¥ —u, is
determined by the valencies of vertices as

Y(M)_{vr}= Z Yi(M), “Vi(M)={v|val(v)=i}.
i1

Let m(M) be the valency of the root-vertex in M, and let n,(M)=|7(M)|,i=1. In
order to enumerate nonisomorphic maps in a set 4, we have to investigate the

function
I (%Y1, Y2, )= Y, x™OTT yp0, (1.1)
Mew izl
which is said to be the vertex partition function of A" Let Z(x;yy,yz,...)=
/=m0 Ninsunz...)30Angma, . X" [liz 1 Y7 Gny,ma,. €R ™ }. In dual form, the face parti-
tion function is defined as
6y, )= Y x0T yron,
MeA i21
where s(M) is the valency of the root-face and s;(M) is the number of non-root-faces
of valency i, i>1, in M.

1.6. We treat a function f(z) as a member of the function space # which has
{1,z,z%,2%,...} as a basis. On the function space &, we introduce a functional,

denoted by |, such that
[F=z, i>l, [1=1. (1.2)

Therefore, [, is a transformation from # to the vector space ¥  which has
{1,24,25,...} as a basis. It is easy to see that |, is linear.
In addition, we also introduce two operators on %. For f(z)e %, let

f(’f) f(y), v (x)=xf(y) (13)
x—y

which are said to be (x, y)-, {x, y)-deference of f; respectively. It is easy to check that
the following relation holds:

ax.y(zf)=xy6x.yf- (14)

The vertex partition function g, (x; y1, ¥2, ...) can be treated as a member of Z as

9(2)=g4(z¥1,¥2, ...) in the context.
The purpose of this paper is to discuss a number of functional equations which

involve the functional |,.

x.yf_ ax.yf'—‘

1.7. Terminologies not explained here refer to [27] on combinatorial maps and to [5]
on combinatorial enumeration.
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2. Equations solved

2.1. A map M is called a tree map if the underlying graph which consists of the
vertices and the edges of M, is a tree. If the valency of the root-vertex of a tree map is 1,
then the tree map is said to be planted.

It is easy to see that any planted tree map, except the trivial case of the link map,
can be uniquely produced by several planted tree maps in the following way. Suppose
the valency of the nonrooted end, which is incident with the semi-edge {fr,afr}, of
the root-edge in M be k>2, then M can be uniquely produced by identifying the
root-vertices of k— 1 planted tree maps and then identifying the nonrooted end of the
link map with the root-vertex of the resultant map. Let 7 be the set of all planted tree
maps and let g5, =Y res, [liz1 y;“m be the vertex partition function of 7.

Theorem 2.1 (Liu [11]). The functional equation

[ (5) =

y

is well defined in R (x;yy,y2,...) and the solution is

f=gf.=z Z l(n,,n’:,-.->n”?" (2.2)

a>1 (ninz,..)er i>1

where I'={(ny,n;,---)20|%, | m=n, ¥y im=2n—1}.

Equation (2.1) can be derived from what was discussed in 2./. Thus, we see that the
solution f=g5. The formula (2.2) can be obtained by using Lagrangian inversion to
solve (2.1).

Let 7 be the set of all tree maps. Then by (2.2), g5 =05 +9%,+ - =g7(1—g5)""*
can be determined. Here we have to pay attention that a vertex P without an edge is

not a map. Of course, P¢7 .

2.2. A map M which has the root-vertex v, adjacent to all other vertices such that
M —u, is also a map is said to be a superwheel. Let & be the set of all superwheels in
which the root-vertices are not cut-vertices. Then & =%, + %5, where &, ={L}, L is
the loop map ({r.ar, fr,afr}, (r,afir)(Br,ar)). We may find that g, =x? and

serms [(Zr TT( 2 o Thrm))

k>1 i=0 \Mie¥ j=2
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Theorem 2.2. The functional equation

p=xt et (x_Lyf) 23

is well defined in R(x; yy,¥2,...) and the solution is

_ (s+1)!
For=it+ T B o ((m—l)'rlmm )Hy& e

m>2 NeS k>1

where S={N=(nz,n3,.‘.)IZJ>2n1=m, S=Zg>1 knk+h 0S"J$m,]>2}

Here we can also employ the Lagrangian inversion to solve (2.3) for obtaining the
solution given by (2.4).

In fact, superwheels here are duals of nonseparable outerplanar maps. Therefore,
the face partition function of nonseparable outerplanar maps is also determined by
(2.4) in the dual form. Further, we may also find the summation-free formulae for the
simple, the bipartite, and the simple bipartite cases of this kind of maps [18].

Theorem 2.3 (Liu [11]). The functional equation

f=x[(yds,(2f+2)) (2.5)
y
is well defined in R(x;yy,ys,...) and the solutions can be expressed as
f=91=x( z Y1 Y’T,e'{>, (2.6)
i20

where
X={x;x% x>, .:); e;=(1,0,0,...),

Y2 V3 Ya Vs

Y1 Y2 V3 Ya

Yr,= yi y2 s
Y1 Y2

0 K

Because the function given by (2.6) is the vertex partition function of general tree
maps, the coefficient of x in (2.6) is just g#, which is given by (2.2).

2.3. A tree map which is allowed to have one circuit at each articulated vertex is called

a wintersweet map. The root-edge is not chosen on a circuit. Let #~ be the set of all the
wintersweet maps.

JR0042
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Theorem 2.4 (Liu [11]). The functional equation

(1- 1~xy—3)f= x [(y8.y(z+2/) )
—J2 y

is well defined in #(x; 1,1, -..) and the solution can be expressed by
f=gv=X(Z(y1+lL)Y$yeI) (2.8)
i>0 )2

where we denote

Y2 Y3 Va Vs

c V2 V3 Va

Yw= C Y2 y3
c )2

0 .

and c=y,+y,/(1—y,).

2.4. Let % be the set of all the maps in each of which there is only one circuit. The
root-edge is chosen to be on the circuit, and the circuit is the boundary of a face.

Theorem 2.5 (Liu [11]). The functional equation
f=x*g,+x[(y0x,f) 29
y

is well defined in R(x;y,,y3,...) and the solution has the form

f=g«w=X( Y ¥InYg Y#,eI) (2.10)

i0 j>0
where g5 and Yy, are indicated in (2.6) and

Y2 V3 Ya Vs Ve
Y2 V3 Ya Vs
Y2 V3 Va

Y2 V3

Y2

YU =

A0

For some kinds of general unicyclic maps, similar results can also be obtained in
this way.
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Theorem 2.6 (Liu [137]). Let o/ be the set of all outerplanar maps and let

|
(p(x)zz_(Zn) x2"=$(1'— /1—4.7(2).

o (n+1)n!

Then the functional equation

f=14+X20(x) f+x [(yds,(2f)) 2.11)
¥y
is well defined in R(x;y,,y,,...) and the solution can be expressed as
(2n—2)!
S i T <) T
f—gd—X(i;Zo Y°(YIel+,,;l T3 ez,,)), 2.12)

where

Y2 V3 Ya Vs Ve
Yi Y2 V3 Ya Vs

Y= Y V2 V3 JVa
0=
Y1 Y2 V3

and the asterisk ‘*’ denotes

_ (@n=2ntn—1)l, i—j=2n
M=, i—j=2n+1,

with n=1,2,3, ...

Theorem 2.7 (Liu [14]). Let & be the set of all nonseparable outerplanar maps. Then
the functional equation

5 .
f=x+ j(—"y =a2f )) (2.13)
¥ 1—xy
is well defined in &(x;y1,3,...) and the solution is
f=gs=X( > Y§€T), (2.14)
iz0
where
Y2 Y3 Va Vs
YatVa Yatys Yat+Ye
Y= Yatyatyse  yatystys
Y2+YatVetys
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and asterisk ‘%’ is determined by the symmetry

Vij=Yji» bi=1.

3. Equations unsolved

3.1. Let # be the set of all planar maps. For convenience, we have to put the graph
9 which consists of a single vertex in . as the degenerate case. .4 can be partitioned
into three parts: one consists of the single map 4, and one of the other two consists of
all the planar maps in which the root-edge is a loop. For a map M, let R=e,. If R is
a loop, then M can be uniquely reformed by two maps M, M,e.# through identify-
ing the two root-vertices of M, M, and then adding the root-loop.

For $#Me#, and R not a loop, we have that M-R, the resultant map of
contracting R from M, is a member of .#. However, for a map Me.#, we have exactly
m(M)+1 maps: Myma-i+2) i=1,2,...,m(M)+1, in #. They are obtained by
splitting the root-vertex, v, in M into v,, and vy, such that the valency of v,, is i,
i=1,2,...,m(M)+1. Their root-edges are not loops.

Theorem 3.1. The functional equation
=1 +X2f2+£(xy5x.y(2f)) (3.1
is well defined in %#(x;yy,y3,...) and the solution is f=g ,.
From [25], the dual form of (3.1) can be found.

3.2. Let .Z be the set of all loopless planar maps [8]. We may partition . into three
parts as ¥ =%+ L, + &, where &, consists of the single map 9 and £, consists
of all the maps whose root-edges are not multiple. We may further see that ¥, can be
produced by splitting the maps in £. On ¢ 5, we have to introduce new kind of maps,
called inner maps, in each of which, there is only one loop, the root-edge with the
root-face {(r),(pr)}. Then we may construct maps in &5 by inner maps in a proper
way. However, an inner map can be exactly expressed by adding the root-loop in
a loopless map. By this procedure, we may finally find the following theorem.

Theorem 3.2 (Liu [19]). The functional equation

. 8., (2*)
f= +f (1—ai,y(z2f)) i)

y

is well defined in R(x;yy, y2,-... ) and the solution is f=g.
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3.3. Let %, be the set of all simple maps, the planar maps whose underlying graphs
are simple [9]. Here we have to consider the case of face partition, the dual vertex
partition. Let fy,  be the face partition function of %,. In this case, we take
Fimn=%im1+FLim2+ Lim3, Where F;1={9}, Fim2 consists of all the maps in
&im Such that the root-edges are separable. The contribution of &, to fy, . is 1. The
contribution of &, to fy, can also be easily found because a map in &y, is
determined by a pair of maps in &;,. The more complicated case is to find the
contnbuuon of - Fim3 10 fy,.. In order to do this, we have to consider that
Fimy= 9’,,,, & im(loop)— & im(mult), where .S’,,,, consists of all the maps which can be
seen as the resultant maps of addmg the root-edges in the root-faces of maps in %,
Of course, not all maps in .5’,,,, are simple. Therefore, we have to leave off %, (loop)
and &, (mult) from ,9’“,,, where im(loop)={M | Me.?im with only one loop which is
rooted}, &im(mult)={M|M eg’:; with only the root-edge multiple}. Further, we may
find the relation of &,(loop) and &;,(mult) to &. Thus, we have the following
theorem.

Theorem 3.3 (Liu [20]). The functional equation
(X’fﬁ((l —xy)f) )f=,f(xy5x.y(2f)+f) (3.3)
y y
is well defined in R(x; y1.y3,...) and the solution is f=fy,_.

3.4. Let #,, be the set of all nonseparable maps and let #,,=.# ., +.# >, where
Moy ={L}, the loop map. The main step is to investigate the relationship between
Moy and #A. First, we may see that for Me#,,,, M-R can be constructed by
identifying the root-vertices of several maps in 4. For several maps in ., if the ways
of splitting each of the root-vertices are given, then a map in .4, can be determined
by identifying the root-edges which are obtained from splitting. From this considera-
tion, in consequence we may find the following theorem.

Theorem 3.4 (Liu [10]). The functional equation

fextx j (—lyf’;;’f f) (3.4)

¥

is well defined in R(x;y,,y,,...) and the solution is f=g ...

In what follows, we present three functional equations related to the Eulerian
cases.

3.5. Let & be the set of all Eulerian maps. As soon as we note that no Eulerian map
has an edge separable, we may find that & can be partitioned into three parts: &,, &,



