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Preface

Since the first monograph titled Enumerative Theory of Maps appeared on the sub-
ject considered in 1999, many advances have been made by the author himself and
those directed by him under such a theoretical foundation.

Because of that book with much attention to maps on surface of genus zero,
this monograph is in principle concerned with maps on surfaces of genus not zero.
Via main theoretical lines, this book is divided into four parts except Chapter 1 for
preliminaries.

Part one contains Chapters 2 through 10. The theory is presented for maps on
general surfaces of genus not necessary to be zero. The theory on a surface of
genus zero is comprehensively improved for investigating maps on all surfaces of
genera not zero.

Part two consists of only Chapter 11. Relationships are established for building
up a bridge between super maps and embeddings of a graph via their automorphism
groups. ’

Part three consists of Chapters 12 and 13. A general theory for finding genus
distribution of graph embeddings, handle polynomials and crosscap polynomials of
super maps are constructed on the basis of the joint tree method which enables us
to transform a problem in a high dimensional space into a problem on a polygon.

All other chapters, i.e., Chapters 14 through 17, as part four are concerned with
several aspects of main extensions to distinct directions.

An appendix serves as atlas of super maps of typical graphs of small size on
surfaces for the convenience of readers to check their understanding.

On this occasion, some of my former and present graduates such as Dr. Junliang
Cai, Dr. Han Ren, Dr. Rongxia Hao, Dr. Linfan Mao, Dr. Zhaoxiang Li, Dr.
Erling Wei, Dr. Liangxia Wan, Dr. Yichao Chen, Dr. Yan Xu, Dr. Wenzhong Liu,
Dr. Zeling Shao, Dr. Yan Yang, Dr. Guanghua Dong et al should be particularly
mentioned for their successful work in related topics.

Most new research results in this book such as Theorems 1.3.5, 1.6.3 and 1.6.4 ,
Chapter 4, §5.5, §6.5, §7.4, §8.5, §9.6, §10.5, §11.2~§11.4, §12.2~§12.4, §13.3~§13.4,
§14.5, Chapter 15 etc are partially supported by the NNSF in China under Grant
Numbers: 60373030 and 10871021.

Yanpei Liu

Beijing, P.R. China
March 2009
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Chapter 1

Preliminaries

Throughout, for the sake of brevity, we adopt the following logical corventions:
disjunction, conjunction, negation, implication, equivalence, universal quantification
and existential quantification denoted by the symbols: V, A, -, =, <, V and 3,
respectively.

In the context, (i.j.k) (or i.j.k) refers to item k of section j in chapter i for
formulae (or theorems and the like).

A reference [k] refers to item k under the corresponding author(s) in the bibli-
ography.

Fundamental concepts and notations not explained in this book can be found
from Liu, Y.P.[63, 68, 81].

§1.1 Maps

A map, denoted by M, is a mathematical concept which can, of course, be seen
as a kind of abstraction from that appearing in geography, is defined to be a basic
permutation P on a disjoint union X' of quadricells with Axiom 1 and Axiom 2
bellow.

Let X be a finite set, and K the Klein group of four elements which are denoted
by 1, @, B, and af. For z € X, the set Kz={z, az, fz, afz} is said to be a
quadricell.

We may write X = )°__y Kz. Naturally, both o and 8 themselves are permu-
tations on X. A permutation P on X is said to be basic if for any z € X there does
not exist an integer k such that P*z = axz.

Axiom 1l oP = P la.
Axiom 2 The group ¥; which is generated by J = {a, B, P} is transitive on X.

Thus, we may write the map M = (X,,g(X),P). From Axiom 1, o and 3 are
asymmetric, i.e., (Xa,8(X), P) # (A8,a(X), P) in general. Sometimes, c is called the
first operator and B, the second operator. Generally, for a map M = (X, 4(X),P),
it is not necessary that (X o(X),P) is also a map because it is not guaranteed to
have Axiom 1 for 4. In fact, Axiom 1 allows us to define the vertices of a map as
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the pairs of conjugate orbits of P on A'. We always write P as the product of the
orbits (in cyclic order) obtained by choosing exactly one, which represents a vertex
as well, in each conjugate pair determined by = and oz for z € X’.

For a map M = (Xa,5(X), P) given, from the definition it is easy to check that
M* = (X3,4(X),Paf) is also a map with 3 as the first operator and «, the second.
We call M* the dual (map) of M. From the duality, the faces of M are defined
to be the vertices of M*. Moreover, an edge of M is defined to be the quadricell
Kz = {z,az,Bz,apfz} for z € X. An edge {z,azr, Bz,afz} can be seen as a pair
of semiedges {z,ar} and {Bz,afz}, or {z, Bz} and {az,afz} as well.

The graph whose vertices and edges are those of a map M is said to be the
underlying graph of M and is denoted by G(M). From Axiom 2, G(M) has to be
connected. Conversely, a map M whose vertices and edges are those of a graph G
is said to be an underlain map of G and denoted by M(G). Of course, M is an
underlain map of G(M). Although any map has a unique underlying graph, a graph
is in general allowed to have many underlain maps.

In fact, any underlain map of a graph (connected of course) is an embedding on a
surface. This enables us to denote a map M by (G, F) such that G = (V, E) = G(M)
where V', E and F are the vertex, edge and face sets respectively. Only one vertex
without edge is always defined to be a map, which is called the trivial map, or the
verter map. If a map has a single edge, then it is called an edge map denoted by
L. If an edge map has a loop, then it is called a loop map; otherwise, the link map.
Apparently, only two possible loop maps exist. They are L; = (X, (z,ofz)) and
L; = (X, (z, Bz)). The unique link map is Ly = (X, (z)(afx)).

Let v, € and ¢ be the numbers of vertices, edges and faces of a map M respectively.
The number

EuM) = v —e + ¢ (1.1.1)
is said to be the Euler characteristic of M.

Further, if a map M = (X, 5(X), P) satisfies the following Axiom 3, then it is

said to be nonorientable; otherwise, orientable.

Axiom 3 The group ¥y generated by L = {af, P} is transitive on X, g(X).

Because it can be shown that if the group ¥, is not transitive on A, g(X) then
it has exactly two orbits one of which is conjugate of the other on Xy g(X), a map
(Xa,8(X), P) is orientable if, and only if, the group ¥, has two orbits on X, a(X).

Let M = (Xa,5(X),P) be a map and e, = {z, azx, Bz, afz} be the edge incident
with z € X, 8(X). For convenience, we always write X instead of X, g(X) without
specific indication and see that

X =X + aX + X + ofX, (1.1.2)
where X = {yz|Vz € X} for v = a, B, or aB. Moreover, an edge ¢, for z € X is
simply denoted by e.
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§1.1 Maps 3

Now, we introduce two kinds of operations for an edge e on a map M. By the
deletion of e on M, denoted by M — e, is meant that

M-—e = (X — e, P(e), (1.1.3)

where P(e) is the restriction of P on X — e. The other, called contraction of e on
M and denoted by M ee, is

Mee = (X — e, Ple]), (1.1.4)
where P|e] is obtained by composing the two vertices « and v incident to e as
{AB, aB™'A71}
when
u = {zA,araA™ '} and v = {afzB, fzaB~'}
while all other vertices are in agreement with those for P.
Theorem 1.1.1 Any map M has Eul(M) < 2.

Proof Because the deletion of an edge on the common boundary of two faces in
a map M reduces one in the face number of M, we can always find a map M/,
v(M') = v(M), such that M’ has only one face and Eul(M’) = Eul(M) by a series
of the operations. From the connectedness, ¥(M’) < e(M’) + 1. Therefore,

Eul(M) =v(M') —e(M')+1<2.
The theorem is proved. O

Two more operations which are often used have to be explained. Suppose v =
(AB) is a vertex of a map M. Let P’ be obtained by substituting (Az) and (oGzB)
for (AB) in P where z is incident with the new edge. Then, the map M’ = (X +
Kz,P') is said to be obtained by splitting the vertex v on M. If v = (zy) is a vertex
in a map M, then the map

M =(X-Kz—-Ky+KzP), z=z=y,

where P’ is the resultant one of deleting (zy) from P, is said to be obtained by
missing the vertex v on M. The inverse of deletion of an edge is called the addition
of an edge and the inverse of missing a vertex, subdividing an edge.

Of course, the inverse of contraction of an edge is splitting a vertex as defined
above. It is easily seen that the Euler characteristic is unchanged under the contrac-
tion of an edge, missing a vertex and their inverses: splitting a vertex, subdividing
an edge.
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However, the invariance of the Euler characteristic under edge deletion and its
inverse, the edge addition, is only for an edge on the common boundary of two faces,
or say, under standard deletion and addition.

Because any map can be transformed into another which has only one face such
that the Euler characteristic is unchanged by virtue of what appears in the proof of
Theorem 1.1.1, we are allowed to consider one face maps for the sake of finding the
simplest one with a given Euler characteristic. For brevity, a map is represented by
its faces with the convention: z=! = afz and hence (az)~! = Bz. On the whole,
we are allowed to realize z = az and hence 8z = afz.

For orientable maps we have the following two properties: Orien.1 and Orien.2
which can be derived from the operations mentioned above.

Orien.1 If a one face map M = (Rzz~1Q), R,Q # @, then
Eul(M) = Eul(RQ).
Orien.2 If a one face map M = (PzQyRz~!Sy~1T), then

Eul(M) = Eul(PSRQTzyz'y™?).

For nonorientable maps, we have the following two properties: Norien.1 and
Norien.2 which can be derived from the operations as well.

Norien.1 If a one face map M = (PzQzR), then
Eul(M) = Eul(PQ~'Rzz).
Norien.2 If a one face map M = (Azzyzy 'z~1), then
Eul(M) = Eul(Azi1z1Z27273T3).

Theorem 1.1.2 If a map M is orientable, then we have Eul(M) = 0(mod 2).
Moreover, M is on the surface of genus p (orientable), p > 0, if, and only if,

Eul(M) = 2 — 2p,
where Eul(M) is the Euler characteristic of M defined by (1.1.1).

Proof From the orientability, each edge e = Kz is only allowed to have {z, afz} =
{z,z71} (or {az, Bz} as well) in one of the two orbits of the group ¥, on X. By
using the properties: Orien.1 and Orien.2 as far as possible, we may finally find that
Eul(M) is equal to either Eul(Op), Op = (zz~!), or

P
Eul(0,), O, = (Hz,—yizflyi_l)

i=1
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for an integer p > 1. By counting the numbers of vertices, edges and faces in Oy
and Op, the first statement of the theorem can be obtained. The second statement
is a conclusion of the characterization of orientable surfaces. O

Theorem 1.1.3 For a nonorientable map M, M is on the surface of genus g
(nonorientable) if, and only if, M has

Eul(M)=2-gq,
whereq 2 1.

Proof From the nonorientability, there always is z in A’ such that both z and az
appear in the face of a one face map. Or in our words here, z appears twice. By
using the properties Norien.1 and Norien.2 as far as possible, we may finally find
that

q
Eul(M) = Eul(N,), N, = (]’[:c‘-w.-)
i=1
for an integer ¢ > 1. Hence, from counting the numbers of vertices, edges, and faces
in Ny, by virtue of the characterization of nonorientable surfaces the theorem is soon
obtained. 0

All Op, p 2 0 and N,, g > 1, are called standard maps on the corresponding
surface. If Eul(M) = 2, i.e.,, (M) = 0, then M is said to be planar. The cases of
p(M) = 1, ¢(M) = 1 and 2, which are often encountered, show that M is on the
torus, the projective plane and the Klein botile respectively.

For two maps M) = (X,,3(X1),P1) and My = (X, g(X2), P2), if there exists a
bijection

T Aap(X1) — Aap(X2)

such that the diagrams (1.1.5) as shown below are commutative for v1 = v = a, for

41 =2 = B and for 4; = P; and y, = Ps, then we say M; and M, are isomorphic
while 7 is called an isomorphism between them.

Xap(X1)) —————— Xap(X2)

N Y2 (1.1.5)
Kop(X1) ———s Xap(X2)

An isomorphism of a map M to itself is called an automorphism of M. All
automorphisms of a map M form a group which is called the eutomorphism group of
M and denoted by Aut(M). The order of Aut(M) is written as aut{M) = |Aut(M)|.

If a map M = (X,,5(X), P) has an element, the root denoted by r = r(M), in
Xa,8(X) marked beforehand, then M is called a rooted map and the marked edge,
the rooted edge of M, which is usually denoted by a = e,(M). And likewise, the
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rooted verter and the rooted face. Two rooted maps are said to be isomorphic if
there is an isomorphism between them such that their roots are in correspondence.

Theorem 1.1.4 For any rooted map, its automorphism group is the trivial group.

Proof Let 7 be an automorphism of a map M with r being the root. Because
7(r) = r, from (1.1.5) we see that

7(ar) =ar, 7(Br)=pr and 7(Pr)="Pr.

Thus, for any 3 € ¥, the group generated by J = {o, 8, P}, we have 7(3r) = yr.
From Axiom 2, the theorem follows. O

Based on this theorem, we may find

Theorem 1.1.5 Let v; and ¢; be the respective number of vertices and faces of
valency i, i > 1, on a map M. Then,

aut(M) | (2ivs, 2 | Vi, i =1, V4, > 1), (1.1.6)

where (2ivi, 2jd; | Vi, i = 1, V4, j > 1) is the greatest common divisor of all the
numbers in the parentheses.

Proof From (1.1.5), an automorphism 7 on M has to have the property that for
x € X which is incident to a vertex of valency i, i > 1, and with a face of valency j,
j 2 1, 7(z) has to be incident to a vertex of valency i and with a face of valency j
as well. We may classify the elements which are incident to a vertex of valency ¢ in

& by the rule:
T ~Aw Y < 37 € Aut(M), = = 1y.

And then, it is seen that all the classes obtained in this way have the same cardinality
which is the order of the automorphism group Aut(M) from Theorem 1.1.4. Since the
number of the elements incident to a vertex of valency 1 is 2iv;, we have aut(M)|2iv;.
Similarly, we may also find aut(M)|2j¢;. From the arbitrariness of the choice of i,
121, and j, j 2 1, the theorem is obtained. (]

From Theorem 1.1.5, one can soon find
aut(M) < (29w, 2j¢; | Vi, i 21, Vj, j = 1). (1.1.7)

Because of the relation

v ¢
4 =2 i =2 i

=1 =1
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