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Preface

Combinatorics as a branch of mathematics studies the arts of
counting. Enumeration occupies the foundation of combinatorics with
a large range of applications not only in mathematics itself but also
in many other disciplines. It is too broad a task to write a book to
show the deep development in every corner from this aspect. This
monograph is intended to provide a unified theory for those related to
the enumeration of maps.

For enumerating maps the first thing we have to know is the sym-
metry of a map. Or in other words, we have to know its automorphism
group. In general, this is an interesting, complicated, and difficult
problem. In order to do this, the first problem we meet is how to
make a map considered without symmetry. Since the beginning of
sixties when Tutte found a way of rooting on a map, the problem
has been solved. This forms the basis of the enumerative theory of
maps. As soon as the problem without considering the symmetry is
solved for one kind of map, the general problem with symmetry can
always, in principle, be solved from what we have known about the
automorphism of a polyhedron, a synonym for a map, which can be
determined efficiently according to another monograph of the present
author [Liu58).

Now, the problems facing us are how to find a functional equation
satisfied by the enumerating function of one kind of map given and
how to find a way to determine the coefficients in the power series
form of the enumerating function by solving the equation. Then, a
further problem is to investigate the stochastic behaviors of the kind
of maps we have already enumerated.

For extracting an equation, a crucial trick is suitably to decompose
the set of maps we are concerned with into several parts such that each
of them can be generated by some operations on the set itself. The
starting operations usually employed are the so called deletion and
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contraction of a specific edge properly chosen. Along this line one
can see how different kinds of operations are constructed for enumer-
ating a variety of types of maps. The way of decomposition is very
closely related to the choice of parameters which the enumeration is
according to. There are tricks which have to be exploited to avoid the
complicatedness involved in deriving the functional equation from the
decomposition.

As soon as a functional equation has been built up, the problem
that follows is to find a suitable way to solve it, or to transform and
simplify it for clarifying the solution. Here, we present a number of
methods for solving the equations directly, or converting them into
some special ones which are solvable in certain cases. The most inter-
esting part is to try to find a way by which the Lagrangian inversion
can be suitably applied for determining the coefficients in the power

. series form of the solution. Hopefully, many simpler formulae for enu-
merating a variety of maps have been obtained via a series of subtle
treatments in this way.

In spite of whether the functional equation is completely solved
or not, one is always allowed to investigate stochastic behaviors by
estimating asymptotic properties of the solution as an enumerating
function of certain kind of maps, when the order of maps is big enough,
up to tending to infinity.

According to the basic theoretical idea as described above, the
whole book is divided into three main parts. The first part, from
Chapter 2 through Chapter 8, is on the ordinary theory of enumer-
ating maps. The second, from Chapter 9 through Chapter 11, is on

- chromatic and dichromatic sums which can be seen as a kind of gener-
alization of enumeration with much complication and much difficulty.
And the third which consists of only one chapter, Chapter 12 is on
the stochastic behaviors. Of course, Chapter 1 provides the neces-
sary knowledge and basic techniques for the requirements of the whole
book. In order to save space, the last section of each chapter is de-
signed to be notes in which some historical remarks, new progress and
unsolved problems with clues for possibly solving them are indicated
in corresponding areas.

On this occasion, I should express my heartiest thanks to all those
having made contributions themselves directly or indirectly to this
book.
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Preface vii

The initiation of this theory was established by Professor W. T.
Tutte whose articles and directions were invoked for me to enter the
field when I was working in the Department of Combinatorics and
Optimization at the University of Waterloo, Canada, in the period of
1982-1984. Without these, I would be doing something else at the
present time.

Many other friends of mine including Professors R. Cori, P.L.. Ham-
mer, D.M. Jackson, R. C. Mullin, R.C. Read, L.B. Richmond, P.
Rosenstiehl, B. Simeone, T.T.S. Walsh, W. Xu and J. Yan are con-
stantly concerned with me in material and spirit. For the final ver-
sion, many people including J.L. Cai (PhD), Y.X. Chang (PhD), F.M.
Dong (PhD), J.G;. Dong, R.X. Hao, Y.Q. Huang (PhD), S. Lawren-
cenko (PhD), A.P. Li (PhD), D.M. Li (PhD), X. Liu (PhD), Yi. Liu
(PhD), T.Y. Liu, T.J. Lu (PhD), K. Ouyang (PhD), X.R. Sun (PhD),
H. Ren, E.L. Wei, F.E. Wu (PhD) and M.L. Zheng (PhD) provide
errata in part or whole.

The source Latex files for the whole book were typed and run on
computers by my daughter Liu Ying.

Institutions including the Department of C & O, University of Wa-
terloo, Canada; DIMACS and RUTCOR, Rutgers University, USA;
the Department of Computer Science, the Department of Mathematics
and the Department of Statistics, University of Rome ‘La Sapienza’,
Italy; the Center of Applied Mathematics, E.H.E.S.S., France; the De-
partment of Mathematics and Computer Science, University of Bor-
deaux I, France; and the Department of ECECS, University of Cincin-
nati, USA provided me the opportunities to visit with the hospitality.
In particular, the Northern Jiaotong University where [ am working
now offers me favorable circumstances.

Last but not least, the partial financial support from the NSF in
USA, the CNR in Italy and the NNSF in China should be especially
acknowledged as well.

Y.P. Liu

Beijing, P.R. China.
May 1998
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Chapter 1

Preliminaries

Throughout, for the sake of brevity, we adopt the following logical
" conventions: disjunction, conjunction, negation, implication, equiva-
lence, universal quantification and existential quantification denoted
by the symbols: V, A, -, =, <, V and 3, respectively.

In the context, (i.j.k) (or 2.j.k) refers to item k of section j in
chapter ¢ for formulae (or theorems and the like).

A reference (k] refers to item & in the bibliography where k consists
of the first few letters(initials) of the last name(s) of the author(s) in
alphabetical order followed by a number to distinguish publications of
the same author(s).

Terminologies not explained in this book can be found in [Liu58],
or probably in [GoJ1] or [Tut39].

§1.1 Maps

A map, denoted by M, is a mathematical concept which can, of
course, be seen as a kind of abstraction from that appearing in geog-
raphy, is defined to be a basic permutation P on a disjoint union X
of quadricells with Axiom 1 and Axiom 2 bellow.

Let X be a finite set, and K the Klein group of four elements which
are denoted by 1, @, 8, and af. For z € X, the set Kz={z, az, Bz,
afz} is said to be a quadricell.

We may write X = }_,ex Kz. Naturally, both o and 3 themselves
are permutations on A'. A permutation P on X is said to be basic if
for any z € X there does not exist an integer k such that P*z = az.

* 5065 -
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2 Chapter 1 Preliminaries

Axiom 1 aoP = P la.

Axiom 2 The group ¥; which is generated by J = {a, B, P} is
transitive on X .

Thus, we may write the map M = (&, 4(X),P). From Axiom 1,
« and § are asymmetric, t.€., (X g(X), P) # (Xp,2(X),P) in general.
Sometimes, «a is called the first operator and 3, the second opera-
tor. Generally, for a map M = (X, 3(X),P), it is not necessary that
(Xsa(X),P) is also a map because it is not guaranteed to have Ax-
iom 1 for B. In fact, Axiom 1 allows us to define the vertices of a
map as the pairs of conjugate orbits of P on X. We always write P
as the product of the orbits (in cyclic order) obtained by choosing
exactly one, which represents a vertex as well, in each conjugate pair
determined by z and ax for z € X.

For a map M = (X, 3(X),P) given, from the definition it is easy
to check that M* = (X34(X),Paf) is also a map with 3 as the
first operator and a, the second. We call M* the dual (map) of M.
From the duality, the faces of M are defined to be the vertices of
M*. Moreover, an edge of M is defined to be the quadricell Kz =
{z,az, Bz, afz} for z € X. An edge {z,az, Bz,afz} can be seen as
a pair of semiedges {x, ar} and {8z, afz}, or {z, Bz} and {az, afz}
as well.

The graph whose vertices and edges are those of a map M is said
to be the underlying graph of M and is denoted by G(M). From
Axiom 2, G(M) has to be connected. Conversely, a map M whose
vertices and edges are those of a graph G is said to be an underiain
map of G and denoted by M(G). Of course, M is an underlain map
of G(M). Although any map has a unique underlying graph, a graph
is in general allowed to have many underlain maps.

In fact, any underlain map of a graph (connected of course) is
an embedding on a surface. This enables us to denote a map M by
(G, F) such that G = (V,E) = G(M) where V, E and F are the
vertex, edge and face sets respectively. Only one vertex without edge
is always defined to be a map, which is called the trivial map, or
the vertez map. If a map has a single edge, then it is called an
edge map denoted by L. If an edge map has a loop, then it is called
a loop map; otherwise, the link map. Apparently, only two possible
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§1.1 Maps 3

loop maps exist. They are Ly = (X, (z,a8z)) and Ly, = (X, (z, 8z)).
The unique link map is Ly= (X, (z)(afz)).

Let v, € and ¢ be the numbers of vertices, edges and faces of a map
M respectively. The number

Eu(M) = v — ¢ + ¢ (1.1.1)

is said to be the Fuler characteristic of M.
Further, if a map M = (X, 5(X), P) satisfies the following Axiom
3, then it is said to be nonorientable; otherwise, orientable.

Axiom 3 The group ¥V, generaied by L = {af,P} is transitive
on Xo g(X).

Because it can be shown that if the group ¥ is not transitive on
Xap(X) then it has exactly two orbits one of which is conjugate of
the other on X, 3(X), a map (X, 3(X),P) is orientable iff the group
V¥, has two orbits on X, g(X).

Let M = (X, 3(X),P) be a map and e, = {z, az, fz,afiz} be the
edge incident with z € &, 5(X). For convenience, we always write X
instead of &, g(X) without specific indication and see that

X = X + aX + BX + afX (1.1.2)

where X = {vyz|Vz € X} for vy = a, 3, or aff. Moreover, an edge e,
for z € X is simply denoted by e.

Now, we introduce two kinds of operations for an edge e on a map
M. By the deletion of € on M, denoted by M — e, is meant that

M-e = (X — ¢, Ple)), (1.1.3)

where P(e) is the restriction of P on & — e. The other, called
contraction of e on M and denoted by M e ¢, is

Mee = (X — ¢, Ple]) (1.1.4)

where P[e] is obtained by composing the two vertices 4 and v incident

to e as
{AB, aB™'A™'}
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4 Chapter 1 Preliminaries

when
u = {zA,azaA'} and v = {efzB, fzaB '}

while all other vertices are in agreement with those for P.

Theorem 1.1.1 Any map M has Eul(M) < 2.

Proof Because the deletion of an edge on the common boundary
of two faces in a map M reduces one in the face number of M, we
can always find a map M’, v(M') = v(M), such that M' has only one
face and Eul(M’) = Eul(M) by a series of the operations. From the
connectedness, v(M’) < ¢(M’) + 1. Therefore,

Bul(M) =v(M') —e(M') +1 < 2.
The theorem is proved. O

Two more operations which are often used have to be explained.
Suppose v = (AB) is a vertex of a map M. Let P' be obtained by
substituting (Az) and (afzB) for (AB) in P where z is incident with
the new edge. Then, the map M' = (X¥+ Kz, P’) is said to be obtained
by splitting the vertex v on M. If v = (zy) is a vertex in a map M,
then the map

M =(X-Kr—Ky+Kz,P), z=z=y,

where P’ is the resultant one of deleting (zy) from P, is said to be
obtained by missing the vertex v on M. The inverse of deletion of
an edge is called the addition of an edge and the inverse of missing a
vertex, subdividing an edge.

Of course, the inverse of contraction of an edge is splitting a vertex
as defined above. It is easily seen that the Euler characteristic is
unchanged under the contraction of an edge, missing a vertex and
their inverses: splitting a vertex, subdividing an edge.

However, the invariance of the Euler characteristic under edge dele-
tion and its inverse, the edge addition, is only for an edge on the
common boundary of two faces, or say, under standard deletion and
addition.

Because any map can be transformed into another which has only
one face such that the Euler characteristic is unchanged by virtue of

- 5068 -



LBt

§1.1 Maps 5

what appears in the proof of Theorem 1.1.1, we are allowed to consider
one face maps for the sake of finding the simplest one with a given
Euler characteristic. For brevity, a map is represented by its faces
with the convention: z=! = afz and hence (az)™! = fz. On the
whole, we are allowed to realize * = az and hence Sz = afz.

For orientable maps we have the following two properties: Orien.1
and Orien.2 which can be derived from the operations mentioned
above.

Orien.1 If a one face map M = (Rzz'Q), R,Q # 0, then
Eul(M) = Eul(RQ).
Orien.2 If a one face map M = (PzQyRz~'Sy~!'T), then

Eul(M) = Eul(PSRQTzyz 'y™).

For nonorientable maps, we have the following two properties:
Norien.1 and Norien.2 which can be derived from the operations as
well.

Norien.1 If a one face map M = (PzQzR), then
Eul(M) = Eul(PQ!Rzz).
Norien.2 If a one face map M = (Azzyzy~'z7), then

Eul(M) = Eul(A$1$1$2.’E2I3.’L‘3).

Theorem 1.1.2 If a map M is orientable, then we have Eul(M)
= 0(mod 2). Moreover, M is on the surface of genus p (orientable),
p = 0,iff

EuM)= 2 — 2p

where Eul(M) is the Euler characteristic of M defined by (1.1.1).

Proof From the orientability, each edge e = Kz is only allowed
to have {x,afz} = {z,z27'} (or {az, Bz} as well) in one of the two
orbits of the group ¥ on X. By using the properties: Orien.1 and
Orien.2 as far as possible, we may finally find that Eul(M) is equal to
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