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1. Introduction

Throughout this work a surface, a graph and an embedding always imply an orientable cycle, a connected graph and an
orientable embedding. The concepts can be found in [2,3,8].

A linear sequence is a letter sequence with the relation <. Since an orientable closed surface can be regarded as forming
by gluing the edges of a directed polygon as a direction, a surface can be regarded as an orientable cycle S which contains
one aand one a~ foreacha € S. p(S) denotes the genus of the surface S and 4 denotes the set containing all of the surfaces.
An equivalence ~ (for example [2]). defined on 4, is as follows:

Op1. AB ~ (Ax)(x~B) where AB = & and x ¢ AB;

Op2. AX;X,Bx; x7 ~ AxBx™ = Ax™ Bxwhere Ax;x,Bx; x; < § and x & AB;

Op3. Axx~B ~ ABwhere Axx "B < £ and AB # 0.

Lemma 1 (For Example [9]). Let A, B, C and D be linear sequences and let xABx~CD be a surface. Then
XABx™CD ~ xBAx™CD ~ xABx™ DC

where x, x~ ¢ ABCD.

Let U be a surface set. The genus distribution of U is

8o(U), &1(U), &(U), ...

The genus polynomial of U is fy(x) = Y10, &(U)x' where g (U) denotes the number of distinet surfaces of U with genus
i(i = 0). Given a graph G and a surface S, if there is a homeomorphism ¢ : G — S such that each connected component of
S — ¢(G) is homeomorphic to an open disc, then G has a two-cell embedding on S. The genus of a graph G is the minimum

* Corresponding author at: Department of Mathematics, Beijing [iaotong University, Beijing 100044, China,
E-mail address: wanliangxia@126,com [LX, Wan),

0893-9659/8% - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi: 10, 1016/j.am1.2008,07.008
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Fig. 1. Go and its four joint trees,

genus of the surface which it can be embedded on. The embedding genus distribution of G, also called the genus distribution,
is
&(G6), &£1(0), £(G), ...

The embedding polynomial, also called the genus pofynomial, of a graph G is fg(x) = )::fo i(G)x' where g;(G) denotes the
number of distinct embeddings of G with genus i. Since determining the genus of a grdph is NP-complete [6], it is NP-
complete to determine the embedding genus distribution of a graph.

Given a graph C. a rotation at a vertex v of G is a cyclic permutation of edges incident with v. A rotation system of G is
obtained by assigning a rotation at each vertex of G. Let T be a spanning tree of G. A joint tree T is formed by splitting each
cotree edge a into two semi-edges a and a~. Given a spanning tree, a joint tree is determined by a rotation system and the
associated embedding surface is a cyclic permutation which is formed by the semi-edges and which is determined by the
joint tree. For example, four joint trees Ty, (1 < k < 4) of Go are obtained by letting a and b of Go be cotree edges and letting
each vertex have a clockwise rotation (see Fig. 1). Embedding surfaces of ﬁ,k fori= 1,2, 3and 4 are respectively aa~b™b,
aa~bb~,a"ab~band a~abb~.

We obtained explicit expressions for the genus distribution for ladder surface sets and cross surface sets [7,9,10]. In this
work we get the relations between genera of ladder surface sets and genera of cross surface sets. Since the embedding genus
distribution of ladders and crosses can be calculated by using the genus distribution for ladder surface sets and cross surface
sets respectively [9.10]. the embedding genus distribution of ladders can be obtained by using the genus distribution of cross
surface sets. Consequently, explicit expressions for genus distribution for closed-end ladders | 1}, Ringel ladders [5], circular
ladders and M&bius ladders [4) are deduced.

2. Main theorem

Let e; and e, be edges of a graph G. A ladder GL, is obtained by adding n (n = 1) vertices u, . Uz, .... Uy ON &1 iN
sequence, n vertices vy, v,, U3, ..., Uy ON &, in sequence and edges wv; such that u, vy and u,v, are parallel edges. A cross
GC, is obtained by adding n vertices uy, Uy, Us, . . ., Uy ON ey iN SEqUENCE, N Vertices vy, v, U3, .. ., Uy ON €, in sequence and
edges yjv; such that u; v, and v, v, are not parallel edges. Denote ujy by gy for 1 <[ < n.

Suppose that a; are distinct letters for I > 1. The ladder surface sets S are as follows for 1 < k < 11:

S = (RBRIRY 3= (RIRIKGR ST = (RRIRIRS)

S] = (aRjRla KR} ST — (aRIRja RIR])

St = RFa R S = (aRa RIRSR])

S3 = [R{RjaR3a"bRyb ™} ¢ = {(R]RzaR%a " bRib ™}

Slo = (RIRZaR3a™bREb™} S}, = {RjaR,a™bR3b™cRjc ™}
where R} = Qi Qeyly; - G0 R) = Gy G o0k Qo0 RS = agapag - a, Ry = ag, a0, -ag,m = ky >
ky > k3 > v >k =211 <kyy <kp<kp< - <kg=nnz=t>th>h> - >1t=1

1=ty <lyr<tyz<--<tp=nand1 =r,s=nky =kstp# tgforp+#q.
The cross surface sets Uy are as follows for 1 < k < 11:

UP = (KPKIKPKD)  UD = (KPKDKIKD)  UD = (KPKDKDKD)

Uf = {akTKFa KIK]) U = {aK{Kia KIKS)

U = {aK{Kja KJK3) U = [aKla KIKJ K}

U = (KfKjaK3a DK7b™} Ui = (KJK}aK}a bKjb™)

upy = (K'KSaKa bKIb™)  UT, = (KMaKfa bKIb™ K}
where K" = an,an,Gn; - -~ G, K3 = @y, Gn 500, - -an,, K3 = @, a,ar, -, Ky = “l:+la‘:+za':+d R e = e
by > h3 > - >R > 11 < hyg <Byr < Bya < - <hh =1 2h<bh<h<-<k=n
n>lyy>hkp>hiz>--->L>=1and1 <r.s<nhy#hglp # dforp +#q.

- 10100 -
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Lo L, Certain joint trees of L,

Fig. 2. Lo, L, and certain joint trees of L,,

Theorem 1 (Theorem 3.1 of [7]). Let &(GLa) denote the number of distinct embeddings with genus i in GLy and let g,(n) denote
the number of surfaces with genus i in S g(G,) is a linear combination of Zm(msfor1 <j<1l,0=sm=iadn=1 0O

Theorem 2. Let g(GC,) denote the number of distinct embeddings with genus i in GC, and let p;(n) denote the number of
surfaces with genus i in U'. g(GCy) is a linear combination of pm(n)'sfor 1 <j<11,0 <m <iandn > 1.

Proof. This conclusion holds on using arguments similar to those in the proof of Theorem 1. 0O
Theorem 3. Suppose that g,(n) and ;. (n) denote the number of surfaces for the surface sets S}' and U;‘ with genus i for
n>1,1=<j=< 11andi = Qrespectively. Lerfsg(x) =fuo(x) = 0. Then,

& (M = pip(M, &, (M) =y (M), & (M) = py(m), g, (M = uy, (n),

g!s (ﬂ) Mts(n)v &g (ﬂ) Has (l’l), &7 (n) Miy (n)v 8Ig (n) Hig (n)1
B (M) = pirg(M), L (M = pig (M), &y (M) = gy ().

Proof. Let a; denote distinct letters for ! = 1 and let

R; = Oy @, Ay~ - - g R;:a"—rua‘fr“%«}s”'a’h'

=a"a"a ---a-  _ a i = n oo
Rs = Gy Ay, - -y, and Ry = g1 B2 Oy 57 Oy

wheren =k > ky > k3> - >k >1L1<ky<kpp<kp< o <khsnnzt>6>t>-->L>1,

= tepy <y < bz < - < tp=mand 1 =r,s=nky 5 kg, t, # tg for p # q. The corresponding cross surface sets U’
are obtained by letting

K = ai, G, e, - - ay,,, anakrﬂakrna’ku'“akm
Ky =000, & and Ki=aa.a, - -a.
Let ¥ be amap defined on U 1 5 such that R}, R}, R3 and R} correspond to K7, K7, K} and K.
For any surface RIR)RIR] € S“ we have w(R"R"RgRQ) = K{KJK;K3. For any surface K{KJK{Ky, v~ (KTKFKIKD) =
R{RGRSR]. Then, yris a bijection Irom S} U}

ﬁmwmwmm—ﬂwmwwumm py ().
The other equations can be veified by using a similar map v as well as by applying Lemma 1. O

3. Applications

Let Ly be the graph shown in Fig. 2 (a). The closed-end ladder L, is formed by adding n parallel edges ujv;, denoted by a;, in
Fig. 2(b). A spanning tree T, of L, is obtained by letting aand q; be cotree edges for 1 < [ < n. Joint trees of L, are obtained by
splitting cotree edges. Let each vertex have a clockwise rotation in each joint tree. Thus, the associated embedding surfaces
of L, are aR}Rja~ RIR]. Certain joint trees of L, are shown in Fig, 2 (c).

By Op2 and Lemma 1

aRRya KSR, ~ aRiRYa R,
Thus,

Jia ) = Jsp(x).
By Theorem 3

Jin® = fi (0.

Then, by using Theorem 4 of [10] we have:

- 10101 -
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a a b
u o
aj‘".‘.'.af’“’ 1 ug(anl- i3 iz 1, v
Uy i Tj> 0 \ w
CLy RL,
Fig.3. Cl,and RL,.

Corollary 1 ([1]). Let gi(L,) be the number of distinct embeddings for L, and let C,(i) = (" -i: - ‘) Then

n—i+1

&) = g 2= 342 t 260, fo<is [—" ; 1] andn > 1;
=
0, otherwise. "3

Asubdivision of CLy, still denoted by CL,, is obtained by adding n— 1 parallel edges a, such that the ends of a, are, respectively, on
uv and ugv, for positive integersn and I withn > 2and 1 < | < n— 1(Fig. 3(a)). A spanning tree of CL, is obtained by letting a,
b and a, be cotree edges. Then CL,, has four types of joint trees for certain R} ™", R ", RS~ and R} ™" according to distinct rotation
pairs at ends of a and b. Accordingly, it has four embedding surfaces R;~'aR;~'a~bR;'b~R, ", a~ R, 'aR} bR} bR},
R 'aRy 'a Ry bR 'band a R 'aRY 'R bR b, Thus,

&(CLn) = 28 (n — 1) + 28i,o(n — 1) = 24 (n — 1) + 2p55(n — 1.
By using Theorem 4 of [ 10], we obtain

Corollary 2 ({5)). Let gi(CL,) be the number of distinct embeddings with genus i for CL, and let go(CL,) = 4 wheren > 1and
i 0.Let Cu() = ("] ") and Dy() = 22 Then,

4, ifi=0andn=2
12, ifi=1landn=2;
2"4+8n+6, fi=1andn=3,4;
2"+8n—-2, ifi=1andn=>5;
@" = 22800 = DD 1) + 2200 - D, ifzsi<g-1andn23;
n
n _ 522 i P A o n—1 T s
a(CLy = (2" = 277 Ca(i — 2)Dp(i — 1) 4 27Ca(i — 1)Dp(d) + 277, z:’a 3 1a:d—n125,
(2" — 2520 — DDul— D+ 22C0— DD + 2 U—2-—1<i5 T-cmdnz4;

n—1
(@ = 2 Cli — DDa(i — ) 423+ — 3.7, if

n
<i< iundnz},

n n+1
@" — 22" DC(i— DA — 1), if 5 i< —“;_ andn > 3;
0, otherwise.

RL, is obtained by adding parallel edges a; such that the ends of a; are on uv and uw each for a positive integer n and
1 < [ < n(Fig 3 (b)). Let @, b and q; be cotree edges. A spanning tree of RL, is obtained. RL, has four types of embedding
surfaces: R{baRyb~Ria™ Ry, b~RibaR}Ria™ R}, RiabR3b~ Rja~ R} and b~ RjabRIRja™R;.
&(RL) = 2841y, (M) + 28,,(n) = 2p-1); (M) + 2424 ().
The following conclusion can be obtained by using Theorem 4 of [ 10]:

Corollary 3 ({4]). Let g(RL,) denote the number of distinct embeddings for RL, with genus i and let C,(i) = (;‘_‘;) Boi=1,
Then
SRLY =2"G() (f1<i<(n+1)/2)
=220 (f2<i<(m+1)/2)
$2¥C 3+ 1) (fr=si=sm—-1)/2)
+2" (ifi=(n—-1)/2)
+2" (fi=n/20ri=(n/2) - 1)

- 10102 -
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$2 WA 9y (if i = n/2)
=2 (fi=1
+2 (fi=0) O

Corollary 4 ({4)). The embedding distribution by genus for ML, equals that of CL,, except that ML, has two extra embeddings
of genus 1 and two fewer embeddings of genus 0, [J
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On Three Types of Embedding of Pseudowheels on
the Projective Plane*

Yan Yang, Yanpei Liu

Department of Mathematics, Beijing Jiaotong University,
Beijing 100044, P.R.China

Abstract A weak (or strong) embedding of a graph G is an embedding of G with
no repeated edges (or vertices) on the boundary of each face of it. A pseudowheel
is a wheel graph with multi-spokes. In this paper, we obtain the numbers (of
equivalence classes) of three types of embedding, i.e., general embedding, weak
embedding and strong embedding, of pseudowheels on the projective plane.

Keywords pseudowheel; embedding; weak embedding; strong embedding
"

1. Introduction

A surfece is a compact 2-dimensional manifold without boundary. It can be
represented by a palygon of even edges in the plane whose edges are identified and
directed clockwise or counterclockwise in pairs. Such polygonal representations
of surfaces can be also written by words. For example, the sphere is written as
Oy = aa™ where a~ is with the opposite direction of a on the boundary of the
polygon. The projective plane, the torus and the Klein bottle are, respectively,
aa, aba” b~ and aabb. Suppose A = ajaz---ae, £ > 1 is & word, then A~ =
a; +++a,a; is called the tnverse of A.

An embedding of a graph G into a surface S is a homeomorphism h: G — 5 of
G into S such that every component of § — h(G) is a 2-cell. In this paper, this
type of embedding is also called general embedding. Two embeddings h: G — S
and g : G — S of G into a surface S are said to be eguivalent if there is an
orientation-preserving homeomorphism f : § — S such that f o h = g. The
connected components of S — h{G) are called faces or regions of the embedding.
A closed curve C on a surface S is called contractible if S — C is disconnected
and one of the regions of S — C is homeomorphic to an open disc; otherwise it is
called noncontractible.

A weak embedding (also called edge-strong embedding see [23]) of a graph G is
an embedding of G such that there are no repeated edges (repeated vertices are
allowed) on the boundary of each face. If the boundary of a face contains no
repeated vertices and edges, then the boundary of the face is a circuit. A strong
embedding (also called closed 2-cell embedding see [23] and circular embedding see
[17]} of a graph G is an embedding of G with all the face boundaries being circuits.
The weak (or strong) embedding conjecture states that every 2-connected graph
has a weak (or strong) embedding on some surfaces. These conjectures have close
relations to the circuit double cover conjecture (see [5],(12] for details).

*Supported by NNSFC under Grant No.60373030
E-mail address: yanyang0206@126.com (Y.Yang)

Utilitas Mathematica 78(2009), pp. 267-278
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The mazimum orientable (or nonorientable) genus of a graph G is the maximum
integer & such that G can be embedded on the orientable (or nonorientable)
surface of genus k, denoted by yam(G) (or ¥a{(G)). If the embedding is strong,
the corresponding maximum orientable (or nonorientable) genus is called strong
mazimum orientable (or nonorientable) genus, denoted by ysam(G) (or Fsu (G)).

Given a graph, how many nonequivalent embeddings does it have on each
orientable surface. This problem was inaugurated by Gross and Furst in [3].
Gross et al.[4] did it for bouquets of circles; Furst et al.[2] for closed-end ladders
and cobblestone paths; Kwak and Lee [6] for dipoles; and Tesar [18] for Ringel
ladders, ete, Chen et al. generalized this problem to nonorientable surface,
and calculated the total genus distribution of necklace, closed-end ladders and
cobblestone paths in [1]; Kwak and Shim [7] for bouquets of circles and dipoles.
Liu [8] gave the number of embeddings of a graph on the sphere.

A natural question, one can posed is that, how many nonequivalent weak (or
strong) embeddings of a graph does it have on each orientable (or nonorientable)
surface. There are two main steps to solve this problem. First, one must find
that on which orientable (or nonorientable) surfaces the graph can be weakly
(or strongly) embedded. Second, enumerate the nonequivalent weak (or strong)
embeddings of the graph on the surfaces it can be embedded.

For n > 3, the wheel graph of n spokes is the graph W,, obtained from a circuit
Ch by edding a new vertex vo and joining it to all vertices of Cn. A wheel
graph with multi-spokes is the pseudowheel Suppose that the vertices of Cj
are vi,...,0,...,vn in clockwise. For 1 < i < n, join vg to »; with k; multi-
edges, then we can get the pseudowheel W1 **n) Let & = (ky,...,kn) be a
n-dimensional vector, wik1e%} can be denoted by W,’f simply. We denote the
k: multi-edges joining vo to v by al, ... e, the edge joining v to viy1 in Cr by
a;, for 1 < i < n, and denote the edge joining v, to vy in C, by ag. Fig.1, Fig.2
illustrate wheel graph Wy and pseudowheel Wfk"k"*"k‘), respectively.

Fig.1. The graph W, Fig.2. The graph Wk1rmke)

In the following, we will introduce the joint tree model of a graph embedding,
established in [9] by Liu, based on his initial work in [10]. By using the joint trees
method, Wan and Liu [21,22] calculated orientable embedding distributions for
certain type of non-planar graphs.

268
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Given a spanning tree T of a graph G, for 1 < i < 3, we split each cotree
edge e; into two semi-edges and label them by the same letter as a; where 3 is
the betti number of &. The resulting graph consisting of tree edges in T and
27 semi-edges is a tree. We denote this new tree by T. Then indexing the 23
semi-edges of 1" by +(always omitted) or ~, so that the indices of each pair of
semi-edges labelled with same letter can be the same or distinct. A rotation at
a vertex v, denoted by o, i3 a cyclic permutation of edges incident with v. Let
06 = [I,cv(q)9» be a rotation system of G.

The tree T' with an index of each semi-edge and a rotation system of it is called
a joint tree [9,11) of G. Denote the joint tree by 72, in which § = (1,02, - , 83)
be a binary vector, &; can be 0 or 1 where d; = 0 means that the two indices
of a; are the distinct; otherwise, the same. By reading these lettered semi-edges
with indices of a T2 in a fixed orientation (clockwise or counterclockwise), we
can get an algebraic representation for a surface. It is a cyclic order of 23 letters
with indices. Such a surface is called an associated surface [11] of G. If two
associate surfaces of G have same cyclic order with the same 8 in their algebraic
representations, then we say that they are the same; otherwise, distinct.

From [11], there is a 1-to-1 correspondence between associate surfaces and
embeddings of a graph, hence an embedding of a graph on a surface can be
represented by an associate surface of it.

In Fig.3 we give two embeddings and their joint trees of pseudowheel W’,,(Q'z'z).
From the joint trees we can get the two associate surfaces corresponding to embed-
dings (a) and (b), they are aja3aiaiacay adal~a?alalal~ and alacaialaelaiaca?
a3ajalal™, respectively.

An embedding on projective plane (a) The Joint tree of the embeddig (a)

A,

a

LN
AR AN AN

Anr ombedding an projective plene (b) The Joint tree of the embeddig (b)

The graph w;z,z,:)

Fig.3. The graph W§2'2’2), embeddings and joint trees of it

From the definition of strong embedding, we have
Lemma 1.1 [20] Suppose ¥ is a strong embedding of a graph G on seme sur-
faces, F(¥) is the set of faces in ¥, then |F(V)| > V(G) where V(G) denoles the
mazimum degree of the graph.

From [13|, we can get that
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Lemma 1.2 [13] Let G be a 3-connected planar greph. If G contains a triangle,
then G has a strong embedding on the projective plane.

Lemma 1.8 For the pseudowheel WE | v, as(WE) = 0, 5000 (WE) = 1 where
k= (ki,...,kn), ks 21, for1<i<n

Proof The maximum degree of pseudowheel graph WEiski 4 - +kn. Suppose
¥ is a strong embedding of W,,, F(¥) is the set of faces in ¥, by Lemma 1.1, we
have that |F(W)| 2 k1 4+ -+kn. By Euler formula, it is impossible to have strong
embeddings of W¥ on surfaces other than the sphere and the projective plane,
Because Wf is a 3-connected planer graph without loops, there exists a strong
embedding on the sphere. And by Lemma 1.2, there exits a strong embedding
on the projective plane too. So Ysp{Wx) = 0, Fem(WE) = 1. Thus the proof is
complete, 0

From the definition of weak embedding and Lemma 1.3, we have that the
pseudowheel W,':‘ also has weak embeddings on the sphere and the projective

plane.

Lemma 1.4 [16] The number of non-negative integral solutions of the eguation
T +za+- 4z, =n(n>0) s (r+:—l).

In this paper, we obtain the numbers (of equivalence classes) of three types of
embedding, 7.e., general embedding, weak embedding and strong embedding, of
pseudowheels on the projective plane, by using the joint tree method.

There are two main reasons why we do these research. Firstly, wheel graph
have some special characters, which had been proved very useful in the research
of 3-connected graphs [19]. Ren and Deng|[15] investigate the flexibility of wheel
graphs on the torus. Secondly, there is no result about the number of weak (or
strong) embeddings of graphs on surfaces as we known up to now. The results
here and the method we used will be helpful for the further research of this type
of problem.

2. The number of general embeddings of pseudowheel
W¥* on the projective plane

Theorem 2.1 The number of general embeddings of pseudowheel WF on the
projective plane is
n=1n—i

Zk?+222kk,+g—2k¢ ij +H(}c 4 1)

i=1 B=1 =l

Proof The circuit Cy of a pseudowheel W can be classified into two cases
in the embeddings. Case 1: C, is contractible; Case 2: C, is noncontractible.
According to [13], in Case 1 and Case 2, the embeddings of W, on the projective
piane have the structures as shown in Fig.4d and Fig.5, respectlvely ‘We choose
V1G1V2 - - - Un—1Gn-1UnQ g as the spanning tree of W and we will discuss the
two cases respectively.
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Fig.4. The embedding of VV,’:c Fig.5. The embedding of Wk
when C,, is contractible when C,, is noncontractible

Case 1 (', is contractible,

Since C, is contractible, it is facial. Let

E,-={a.,!,...,a:°"}, 1<i<
i

M= {Ei|3aic Est. oa)=1 1<t<k; 1<i<n);

and

. — a1t
Aj; = a;

Ekpn—1
3 L .

&) .
"'“jJ;1 <jsn—1, An=ay'---a

The sequence &€1,...,&k; is & permutation of {1,2,...,k;}. It is easy to get that
there are k;! possible forms of A;,1 < ¢ <n — 1, according to the rotation at v,
We classify the embeddings according to the number |].

Subcase 1.1 |H| = 1.

Subcase 1.1.1 #a! € En,8t. 6(ak)=1,for 1 <t < kn,

In this case, according to the structure as shown in Fig.4 and the joint tree
method, we can get that the joint trees of pseudowheel WY on the projective
plane have the form as (a) or (b) in Fig.6, where

A= AlAALAl 21,1 <i<n—1; ARAL = Ay
Bi= Al An - Ag AT AAIT AL, - AT AT
By = AL AT - AL AT AT A AR A

angAvlﬁ /EBl 0 ag\ﬁ/‘.Bz
e A WA

Ay A
(@) ()

1 AL

Fig.6. The joint trees

By reading the lettered semi-edges of joint trees (a) in clockwise in Fig.6, one can
get the corresponding associate surfaces, they are of the forms

(Ay--- Ao gAML By A A AC - Al AT
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