B AN XLinux®ie o

Mastering Embedded Linux Programming

Chris Simmonds 3%

[PACKT]

PUBLISHING

FEE#R NI Linux B8 (FER)

Chris Simmonds 2

MR FREXFHAMT

BB R4 B (CIP) 8 #E

W@ ik A2\ Linux 48 330/ GO R - P 5
7% (Chris Simmonds)3 . — EIA. —F R KM K% H
fi4t ,2017.4

4544 J& 3 : Mastering Embedded Linux Programming

ISBN 978 —7-5641—-7078 -3

1.OK 1I.0O%- I.OLinux #/EHR%—
BRFi&i-—%x N. OTP316.85

[R A R 348 CIP 3 4% (2017 56 051863 5

© 2015 by PACKT Publishing Ltd

Reprint of the English Edition, jointly published by PACKT Publishing Ltd and Southeast University Press, 2017.
Authorized reprint of the original English edition, 2016 PACKT Publishing Ltd, the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
B M d7 PACKT Publishing Ltd # #& 2015,

KXY Rt AR K g RRAE R 2017, ¥ PP AR 69 kR Ao 45 A2 AT 3] kR AR Ao 4 2 AR B BT R A
—— PACKT Publishing Ltd # # T,

WA AR R @HFT ABGETR P LIRFAEFMBEH .

Fl #x A Linux 42 G2 EDRO

AR AT . AR B RS A

o dke BARUGEEE 2S5 HE%E 210096
HOR A ITEF

& ik . http//www.seupress.com

BT MR . press@ seupress.com

Rl 8 oM 7 2R 2R = BRI R A]
A, 787 B X 980 K 16 4=
gk. 26

¥ 509 T

W 2017 4E 4 A% 1R

W 2017 4E 4 A5 1 RENRI

5. ISBN 978 - 7 - 5641 — 7078 — 3
#: 76.00 TG

M EDFHNEHI

FHEBEFPEFRRERE, FEESEHTBER, BIE(EE) . 025-83791830

Credits

Author
Chris Simmonds

Reviewers
Robert Berger

Tim Bird

Mathieu Deschamps
Mark Furman

Klaas van Gend
Behan Webster

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Sonali Vernekar

Content Development Editor
Samantha Gonsalves

Technical Editor
Dhiraj Chandanshive

Copy Editor
Kevin McGowan

Project Coordinator
Sanchita Mandal

Proofreader
Safis Editing

Indexer
Priya Sane

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

Foreword

Linux is an extremely flexible and powerful operating system and I suspect we've
yet to truly see it used to full advantage in the embedded world. One possible reason
is that there are many different facets to it and the learning curves can be steep and
time consuming.

Its possible to figure your way own through the world of Embedded Linux, as

I myself have done over the past decade, however I am pleased to see people like
Chris putting together books like this which give people a good grounding on many
useful topics. I certainly could have used a guide like this back when I started!

I obviously have a personal bias to the Yocto Project, it being my major contribution
and attempt to make a difference to the Embedded Linux world. One of its core
objectives is to try and make things easier for people building Embedded Linux
systems. We've had some successes; there are also areas we know work is still
needed. We're continually trying to simplify barriers to entry and let more people
get involved, make the technology more accessible and encourage adoption.

In writing this book, Chris is supporting the same objectives. I hope you enjoy
the book, enjoy Linux and that ultimately that we might see you becoming a part
of the vibrant open source communities that make up many of the components
you're about to learn about.

Richard Purdie
Yocto Project Architect, Linux Foundation Fellow

About the Author

Chris Simmonds is a software consultant and trainer who lives in southern
England. He has been using Linux in embedded systems since the late 1990s, during
which he has worked on many interesting projects, including a stereoscopic camera,
intelligent weighing scales, various set-top boxes and home routers, and even a large
walking robot.

He is a frequent presenter at open source and embedded conferences, including the
Embedded Linux Conference, Embedded World, and the Android Builders' Summit.
He has been conducting training courses and workshops in embedded Linux since
2002 and in embedded Android since 2010. He has delivered hundreds of sessions to
many well-known companies. You can see some of his work on the "Inner Penguin"
blog at www. 2net . co.uk.

I would like to thank my editor, Samantha Gonsalves, for her tireless
work in reviewing my work and keeping me on track. [would also
like to thank the people who took time to review my early drafts and
to see through my obfuscations to the core of what I was trying to
say. So, I would like to thank Behan Webster, Klaas van Gend, Tim
Bird, Robert Berger, Mathieu Deschamps, and Mark Furman. Last
but not least, I would like to thank my wife, Shirley Simmonds, for
her support and for understanding the fact that I really could not
help her redecorate the house because I had a book to write.

About the Reviewers

Robert Berger has been gathering practical and managerial experience in software
design and development for embedded systems with and without hard real-time
requirements since 1993. Since the beginning of the 21st century, he has been using
GNU/Linux on desktops and server class machines, but mainly for embedded
practices (automotive, industrial control, robotics, telecoms, consumer electronics,
and so on). He regularly attends international events, such as Embedded World,
Embedded Software Engineering Congress, Embedded Systems Conference, and
Embedded Linux Conference as an expert and lecturer. His specializes mainly in
training, but also in consulting (in German or English) worldwide. Robert's expertise
ranges from the smallest real-time systems (FreeRTOS) to setups with multiple
processors/ cores and embedded GNU/Linux (user-, kernel-space, device drivers,
hardware interfacing, debugging, multi-core, and the Yocto project) with a focus on
free and open source software. He is a globetrotter. He is the CEO and embedded
software specialist at Reliable Embedded Systems, which is based in St. Barbara,
Austria. When he is not traveling, he lives with his family in Athens, Greece. Feel
free to contact him on his website at http: //www.ReliableEmbeddedSystems . com.

He has reviewed the book Embedded Linux Systems with the Yocto Project (Prentice Hall
Open Source Software Development Series) by Rudolf |. Streif.

Tim Bird works as a senior software engineer for Sony Mobile Communications,
where he helps Sony improve the Linux kernel for use in Sony's products. He is

also the chair of the Architecture Group of the CE Working Group of the Linux
Foundation. He has been working with Linux for over 20 years. He helped found
two different embedded Linux trade associations and is the creator of the Embedded
Linux Conference, which he still leads. Earlier in his embedded Linux career, Tim
coauthored the book Using Caldera OpenLinux.

Mathieu Deschamps is the founder of ScourGE (www. scourge . £r), which
provides open source software/hardware innovation services to its clients. They
are leaders in the fields of telecommunication, mobile communication, industrial
processes, and decision support systems.

He is an R&D business consultant and a trainer. Also, since 2003, he has been an
independent tech-driver, involved in many large and small scale projects around
GNU/Linux, Android, embedded systems engineering, and security.

Mark Furman, author of OpenVZ Essentials, currently works as a systems
engineer for Info-Link Technologies. He has been in the IT field for over 10 years
and specializes in Linux and other open source technologies. In his spare time, he
enjoys writing and reviewing books on Linux and other open source technologies
as well as tinkering with Arduino, Python, and Raspberry Pi projects at Knox Labs,
a Hackerspace located in Knox County, OH.

Klaas van Gend graduated in systems and control engineering at Eindhoven
University of Technology in the Netherlands. He worked for companies, including
Philips, Siemens, and Bosch, writing software for printer prototypes, video encryption,
car infotainment, medical equipment, industrial automation, and navigation systems.
In 2004, he switched over to MontaVista Software, which was the market leader

for embedded Linux. As a systems architect and consultant, he worked with many
companies all over Europe, integrating embedded Linux into their products.

For the last few years, he has been working as a trainer and consultant for Vector
Fabrics, a small start-up specializing in multi-core programming and software
dynamic analysis. He teaches multi-core programming in C and C++ and helps
customers improve software performance by utilizing hardware resources in a
better way. Vector Fabrics' Pareon tool suite also automatically finds hard-to-find
dynamic bugs, including data races, buffer overruns, use-after-free for heap and
stack variables, and memory leaks.

He has authored over 100 magazine articles and papers on (embedded) Linux,
programming, performance, systems design, and computer games. He cofounded
the Embedded Linux Conference Europe and was a lead developer for several open
source projects, including UMTSmon for 3G cellular networks and the physics
puzzle game The Butterfly Effect.

When not at work, he reads urban fantasy or can be found at Aeroclub Nistelrode,
piloting glider planes.

Behan Webster has spent two decades in diverse tech industries such as telecom,
datacom, optical, embedded, and automotive writing code for a range of hardware
from the very small to the very large. His Linux experience spans kernel programming,
Embedded Linux, and board bring-up. Currently, he is the lead consultant at Converse
in Code Inc, an embedded Linux engineer and project lead working on the LLVMLinux
project as well as being a trainer for The Linux Foundation.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www . PacktPub . com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at serviceepacktpub.com for more details.

At www . Packt Pub . com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2 .packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
 Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

e On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

Preface

An embedded system is a device with a computer inside that doesn't look like a
computer. Washing machines, televisions, printers, cars, aircraft, and robots are all
controlled by a computer of some sort, and in some cases, more than one. As these
devices become more complex, and as our expectations of the things that we can do
with them expand, the need for a powerful operating system to control them grows.
Increasingly, Linux is the operating system of choice.

The power of Linux stems from its open source model, which encourages sharing

of code. This means that software engineers from many backgrounds, and often
employed by competing companies, can cooperate to create an operating system
kernel that is up-to-date and tracks the development of the hardware. From this one
code base, there is support from the largest super computers down to a wristwatch.
Linux is only one component of the operating system. Many other components are
needed to create a working system, from basic tools, such as a command shell, to
graphical user interfaces, with web content and communicating with cloud services.
The Linux kernel together with an extensive range of other open source components
allow you to build a system that can function in a wide range of roles.

However, flexibility is a double-edged sword. While it gives a system designer

a wide choice of solutions to a particular problem, it also presents the problem of
knowing which are the best choices. The propose of this book is to describe in detail
how to construct an embedded Linux system using free, open source projects to
produce a robust, reliable, and efficient system. It is based on the experience of the
author as a consultant and trainer over a period of many years, using examples to
illustrate best practices.

[xiii]

Preface

What this book covers

Mastering Embedded Linux Programming is organized along the lines of the life cycle of a
typical embedded Linux project. The first six chapters tell you what you need to know
about how to set up the project and how a Linux system is put together, culminating in
selecting an appropriate Linux build system. Next, comes the stage where certain key
decisions must be made about the system architecture and design choices, including
flash memory, device drivers, and the init system. Following this is the phase of
writing applications to make use of the embedded platform you have built, and for
which there are two chapters on processes, threads, and memory management. Finally,
we come to the stage of debugging and optimizing the platform, which is discussed

in chapters 12 and 13. The last chapter describes how to configure Linux for real-time
applications.

Chapter 1, Starting Out, sets the scene by describing the choices available to the
system designer at the start of a project.

Chapter 2, Learning About Toolchains, describes the components of a toolchain with
an emphasis on cross-compiling. It describes where to get a toolchain and provides
details on how to build one from the source code.

Chapter 3, All About Bootloaders, explains the role of the bootloader to initialize the
hardware of the device and uses U-Boot and Bareboot as examples. It also describes
the device tree, which is a means of encoding the hardware configuration, used in
many embedded systems.

Chapter 4, Porting and Configuring the Kernel, provides information on how to select a
Linux kernel for an embedded system and configure it for the hardware within the
device. It also covers how to port Linux to the new hardware.

Chapter 5, Building a Root Filesystem, introduces the ideas behind the user space part
of an embedded Linux implementation by means of a step-by-step guide on how to
configure a root filesystem.

Chapter 6, Selecting a Build System, covers two embedded Linux build systems, which
automate the steps described in the previous four chapters and conclude the first
section of the book.

Chapter 7, Creating a Storage Strategy, discusses the challenges created by managing
flash memory, including raw flash chips and embedded MMC or eMMC packages.
It describes the filesystems that are applicable to each type of technology. It also
covers techniques on how to update the device firmware in the field.

[xiv]

Preface

Chapter 8, Introducing Device Drivers, describes how kernel device drivers interact
with the hardware with worked examples of a simple driver. It also describes the
various ways of calling device drivers from the user space.

Chapter 9, Starting up - the init Program, shows how the first user space program,
init, which starts the rest of the system. It describes the three versions of the init
program, each suitable for a different group of embedded systems, with increasing
complexity from BusyBox init to systemd.

Chapter 10, Learning About Processes and Threads, describes embedded systems from
the point of view of the application programmer. This chapter looks at processes and
threads, inter-process communication, and scheduling policies.

Chapter 11, Managing Memory, introduces the ideas behind virtual memory and how
the address space is divided into memory mappings. It also covers how to detect
memory that is being used and memory leaks.

Chapter 12, Debugging with GDB, shows you how to use the GNU debugger, GDB,
to interactively debug both the user space and kernel code. It also describes the
kernel debugger, kdb.

Chapter 13, Profiling and Tracing, covers the techniques available to measure the
system performance, starting from whole system profiles and then zeroing in on
particular areas where bottlenecks are causing poor performance. It also describes
Valgrind as a tool to check the correctness of an application's use of thread
synchronization and memory allocation.

Chapter 14, Real-time Programming, provides a detailed guide to real-time programming
on Linux, including the configuration of the kernel and the real-time kernel patch,

and also provides a description of tools to measure real-time latencies. It also covers
information on how to reduce the number of page faults by locking the memory.

What you need for this book

The software used in this book is entirely open source. The versions used are, in
most cases, the latest stable versions available at the time of writing. While I have
tried to describe the main features in a manner that are not specific to a particular
version, it is inevitable that the examples of commands contain some details that
will not work with the later versions. I hope that the descriptions that accompany
them are sufficiently informative so that you can apply the same principles to the
later versions of the package.

[xv]

Preface

There are two systems involved in creating an embedded system: the host system
that is used to cross-compile the software and the target system on which it runs.
For the host system, I have used Ubuntu 14.04, but most Linux distributions will
work with little modification. In the same way, I had to choose a target system to
represent an embedded system. I chose two: the BeagelBone Black and the QEMU
CPU emulator, emulating an ARM target. The latter target means that you can

try out the examples without having to invest in the hardware for an actual target
device. At the same time, it should be possible to apply the examples to a wide range
of targets with adaptations for specifics, such as device names and memory layout.

The versions of the main packages for the target are U-Boot 2015.07, Linux 4.1,
Yocto Project 1.8 "Fido", and Buildroot 2015.08.

Who this book is for

This book is ideal for Linux developers and system programmers who are already
familiar with embedded systems and who want to know how to create best-in-class
devices. A basic understanding of C programming and experience with systems
programming is needed.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We could use the stream I/ O functions fopen (3), fread (3), and fclose (3)."

A block of code is set as follows:

static struct mtd partition omap3beagle nand partitions([] = {
/* All the partition sizes are listed in terms of NAND block
size */
{
.name = "X-Loader",
.offset =0,
.size = 4 * NAND BLOCK SIZE,

.mask_flags = MTD_WRITEABLE, /* force read-only */

[xvi]

Preface

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

static struct mtd_partition omap3beagle nand partitions[] = {
/* All the partition sizes are listed in terms of NAND block
size */
{
.name = "X-Loader",
.offset =0,
.size = 4 * NAND BLOCK SIZE,

.mask_flags = MTD_WRITEABLE, /* force read-only */
}
}

Any command-line input or output is written as follows:

flash erase -j /dev/mtdé 0 0

nandwrite /dev/mtdé rootfs-sum.jffs2

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"The second line prints the message Please press Enter to activate this console
on the console."

Warnings or important notes appear in a box like this.

Al

~ Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub .com/authors.

[xvii]

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http: //www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code — we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit -errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

[xviii]

Preface

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[xix]

