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To the Reader

1. Introduction

This book grew out of lectures delivered at the University of California,
Berkeley, over many years. The subject is a part of asymptotics in statistics,
organized around a few central ideas. The presentation proceeds from the
general to the particular since this seemed the best way to emphasize the basic
concepts. The reader is expected to have been exposed to statistical thinking
and methodology, as expounded for instance in the book by H. Cramér [1946]
or the more recent text by P. Bickel and K. Doksum [1977]. Another pos-
sibility, closer to the present in spirit, is Ferguson [1967]. Otherwise the reader
is expected to possess some mathematical maturity, but not really a great deal
of detailed mathematical knowledge. Very few mathematical objects are used;
their assumed properties are simple; the results are almost always immediate
consequences of the definitions. Some objects, such as vector lattices, may not
have been included in the standard background of a student of statistics. For
these we have provided a summary of relevant facts in the Appendix.

The basic structures in the whole affair are systems that Blackwell called
“experiments” and “transitions” between them. An “experiment” is a mathe-
matical abstraction intended to describe the basic features of an observational
process if that process is contemplated in advance of its implementation.
Typically, an experiment consists of a set @ of theories about what may
happen in the observational process. Each theory 6 € © specifies a probabilis-
tic model for the behavior of the things under observation. This is summarized
by a probability measure P, on a certain o-field .o7. The o-field is independent
of 6. It is the collection of events for which the available instruments permit
a determination of whether or not the event occurs. For technical reasons we
have used a slightly different set-up, but this does not change anything of
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practical relevance. It was just more convenient to rewrite the definitions in
such a way that the desired theorems are always true, instead of imposing
restrictive conditions on a more standard system.

We have taken a restricted view of the aims of the statistician who contem-
plates performing an experiment. His goals are described in the framework of
Wald’s decision theory, with loss functions, risk functions, and related objects.

The main underlying theme can then be described as follows: The statis-
tician faces a certain experiment & = {F,; 0 ®}. It may be a rather complex
affair. He proceeds by searching for another experiment # = {Q,; 8 € ®} that
is (1) known and mathematically tractable, and (2) close enough to & so that
techniques selected for % can be transformed into techniques for & without
dire consequences.

There are very few known and tractable experiments. The one-dimensional
Gaussian shift family may qualify. The same cannot be said of Gaussian shift
families in higher dimensions. In spite of this, the large amount of space
devoted here to Gaussian shift families is mostly a consequence of other facts.
They impose themselves on one from many directions, such as the use of
Taylor expansions, invariance properties, observational processes where each
individual observation gives only a tiny bit of information, etc. Some of these
reasons are detailed in Chapters 8, 9, and 10.

We have mentioned “approximating” an experiment & by another experi-
ment % . To make sense of this, a distance (or more precisely, a pseudo distance)
between experiments has been introduced. This could be done in several
manners. One possibility was to use only loss functions that are bounded by
unity and insist that & is close to & if any risk function achievable on & is
uniformly close to a risk function of &, and conversely. Another possibility
was to say that & and & are close to each other if each of the two can be very
closely mimicked by a randomization of the other. It turns out that the two
distances so defined are not only related, but exactly equal.

From time to time results are stated as limit theorems obtainable as some-
thing called n “tends to infinity.” This is especially so in Chapter 7 where the
results are just limit theorems. Otherwise we have made a special effort to
state the results in such a way that they could eventually be transformed into
approximation results. Indeed, limit theorems “as n tends to infinity” are
logically devoid of content about what happens at any particular n. All they
can do is suggest certain approaches whose performance must then be checked
on the case at hand. Unfortunately the approximation bounds we could get
were too often too crude and cumbersome to be of any practical use. Thus we
have let n tend to infinity, but we would urge the reader to think of the material
in approximation terms, especially in subjects such as the ones described in
Chapter 11.

The main body of the theory makes no reference to independence of
observations or any such structural aspects of the experiments under con-
sideration. It is therefore applicable to many domains involving stochastic
processes and other similar affairs. However, a great deal of the argumentation
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is local, with approximations valid only in small neighborhoods. To piece
these together (as in Chapter 11) requires the use of good auxiliary estimates.
We have demonstrated the existence of such estimates only in situations that
involve independent observations. One could do it in other contexts, for
instance for Markov processes. However, recent results of L. Birgé convinced
me that it could be premature to describe such situations at this time.

The passage from purely local results to global ones is described in Chapter
11 for the Gaussian approximations. One can do something similar for other
exponential families. Some indications are given in Chapter 14, but a full
theory is not developed there.

Chapters 16 and 17 treat, in some detail, experiments in which one observes
independent or independent identically distributed random variables. This is
mostly to illustrate the general theory and show that it encompasses a sizeable
portion of standard asymptotics.

Even in the standard independent identically distributed case no attempt
has been made to cover the entire field. A compendium of the results available
for that case would require many volumes. The reader will find supplementary
material in the book by Serfling [1980]; it hardly overlaps with this volume.
Further material can be found in the book by L.A. Ibragimov and R.Z.
Has'minskii [1979], whose spirit is closer to ours. At one time we had intended
to give an account of the results on “second order efficiency” in line with the
concepts developed here. This would take much space. For these results the

reader is referred to the works of J. Pfanzagl [1980] and of M. Akahira and
K. Takeuchi [1981].

2. Summary of Contents and Historical Notes

This is a brief description of the contents of this volume, chapter by chapter,
with a few historical remarks. To mention “history” is to imply attributions
of priority. We have not intentionally failed to attribute priorities, nor did we
intentionally misattribute them. If that has happened by chance, we shall take
refuge behind Steve Stigler’s “law of eponymy” [1979] which states that “No
scientific discovery is named after its original discoverer.”

Chapter 1 gives the basic definitions involving experiments, decision spaces,
and transitions. The framework is not far removed from that used by A. Wald
[1950], except that we remain in the nonsequential case. Also, we elected to
work with vector lattices and positive linear operators instead of families of
measures and Markov kernels. The main reason for this choice is that it allows
one to work essentially as if all the objects used were finite sets. The basic
compactness results (Theorem 2, Chapter 1) and the minimax theorem (Theo-
rem 1, Chapter 2) are always true, instead of being encumbered by unappetiz-
ing ad hoc assumptions.

The necessary elements of the theory of vector lattices can be found in
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the Appendix. They were drawn from the papers of S. Kakutani [1941a]
[1941b], J. Dieudonné [1944], and F. Riesz [1940]. A short account occurs
in Bourbaki’s Integration, Chapter 2. There are now extensive book-length
accounts of the subject. Two excellent references are H.H. Schaefer [1974] and
D. Fremlin [1974].

An important technical result of Chapter 1 is Theorem 1. It says that every
transition can be approximated by very simple Markov kernels. The result is
a strengthened version of a theorem in Le Cam [1964]. The strengthening was
performed to accommodaate a request by W. Moussatat.

For readers who prefer to work with measurable spaces and Markov
kernels we have provided a translation in the form of representation theorems.
For further information regarding the representation of positive operators by
Markov kernels, see Sazonov [1962] and L. Schwartz [1973a] [1973b].

The name “experiment” for a family of probability measures seems to have
been coined by D. Blackwell [1951]. The concept itself is much older; it was
familiar to Wald [1939]. One could perhaps give part of the credit for its
elaboration to Neyman and Pearson who repeatedly, and against R. A.
Fisher’s blandishments (see Fisher [1955], page 70), emphasized the necessity
of considering all reasonable alternatives.

Chapter 2 gives some basic results from the theory of statistical decision
functions (Wald [1950]), from the theory of comparison of experiments, and
from the theory of approximation of experiments (Le Cam [1964]). Theorem
1 is a form of the minimax theorem akin to that given in Le Cam [1955]. It
is followed by the attendant results on completeness of classes of procedures
directly related to Bayes procedures. The initial minimax theorem is that of
von Neumann [1928]. Many authors, including J. Ville [1938], Wald [1945],
Karlin [1950], and Kneser [1952] gave extensions and modifications of the
result. There are better minimax theorems due to M. Sion [1958]. See also C.
Berge and Ghouila-Houri [1962].

Comparison of experiments was investigated by Bohnenblust, Shapley, and
Sherman [1950] following an idea of von Neumann. The statistical wording
with the relation to “sufficiency” is due to Blackwell [19517 [1953] and Stein
[1951]7; see also C. Boll [1955]. The idea of “deficiency” and distances is taken
from Le Cam [1964]. The basic Theorem 2 says that several definitions of
“deficiency” are all equivalent. It is taken from Le Cam [1964]. The elabora-
tion in terms of conical measures (Choquet [19697]) was influenced by the work
of Torgersen [1970]. The chapter also contains some results on the minimal
forms of experiments. These are directly related to the idea of sufficiency.

Chapter 3 revolves around distributions of likelihood ratios and their
connections with deficiencies or distances between experiments. It uses
Blackwell’s “canonical measures.” Theorem 1 shows that, for finite parameter
sets, the distance between experiments is bounded by the dual Lipschitz dis-
tance between their respective canonical measures. This has many implica-
tions. One of them is a compactness result, given in Theorem 1 and Theorem
2. The compactness result for finite parameter sets occurs in Le Cam [1969].
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The general case, for the weak topology, was stated in Le Cam [1972]. That
the “proof ” given there is wrong was pointed out to me by W. Moussatat. I
then gave a more elaborate proof using representations of conical measures
along the lines of the last part of Chapter 2. The proof given here was obtained
independently of the work of E. Siebert [1979], but, except for matters of
notation and terminology, it appears analogous to that of Siebert.

Proposition 1, relating deficiencies and testing deficiencies, is taken from
Torgersen [1970]. It implies the characterization of equivalence of experi-
ments by isometries of their linear spans (Proposition 2). This characterization
is given in Le Cam [1964] and in Torgersen [1970]. Theorem 3, characterizing
boundedly complete experiments as extreme points, is imitated from Torgersen
[1977]. Proposition 4 involves direct products of experiments and the fact
that making a direct product amounts to convolute conical measures. The
convolution operation admits a representation by pointwise products of the
associated Hellinger transforms. Theorem 4 is a form of the Blackwell-
Sherman-—Stein theorem. For other related results, see V. Strassen [1965].

- Chapter 4 gives a variety of inequalities. The inequalities between Hellinger
distances and L,-norms occur in C. Kraft [1955]. The relations with the
chi-square like distance (called k(P, Q)) are easy, but we did not find them in
the literature. The distance called k(P, Q) occurs in a paper of Sanghvi [1953].
Proposition 2 and some of the results that follow it are essential in that they
give relations between proximity of measures, as computed by L,-norms, and
proximity of likelihood ratios. The inequalities called (a) or (d) imply what is
called Scheffé’s theorem (Scheffé [1947]). The inequalities between conditional
expectations (Proposition 3 and 4) will be used in connection with studies of
“insufficiency” (Chapter 5) and convergence of posterior distributions (Chap-
ter 12). Proposition 5 is about what happens if one uses for a pair (P, P, ) tests
that were designed to be optimal for a pair (G,, G,) with small dual Lipschitz
distances | P, — G| p.

Chapter S concerns sufficiency and approximate sufficiency. For a domi-
nated experiment & = {P;; 6€®} on a o-field #, a sub o-field & = & is
sufficient if and only if the experiment obtained by restricting the P, to .« is
equivalent to & itself. This was proved by Bahadur [1955] but had escaped
my attention when I wrote Le Cam [1964]. It is not a direct consequence of
the Blackwell-Sherman—Stein theorem. Here we list eight different properties
and show that they are all equivalent to sufficiency. To avoid some techni-
calities and paradoxes (Burkholder [1961]) we work with positive projections
in vector lattices instead of conditional expectation operations. The literature
on such projections is large. See, for instance, Neveu [1972] and the references
given therein.

If a o-field .o/ < 2 is not sufficient there are several ways of measuring how
far it is from being sufficient. One of them is the deficiency of Chapter 2. One
can also see how much the P, should be modified to make </ sufficient. This
gives a different number called “insufficiency” here. Actually there are several
variations on that theme and we were not able to show that they are all
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identical. At any rate they give numbers larger than the deficiencies. Examples
are given of this, as well as theorems that allow bounding insufficiencies in
terms of deficiencies in special cases. See, for instance, Proposition 5. Since
deficiencies or insufficiencies can often be evaluated only on very small parts
of the parameter spaces, a machine to put these local evaluations together is
needed. Propositions 6 and 7 give some results in that direction. Proposition
8 corrects a wonderfully wrong inequality of Le Cam [1974].

Chapter 6 is about compactness and contiguity. It lists a theorem of Dun-
ford, Pettis, and Grothendieck [1953] [1955]. (The proof is in the Appendix.)
It also proves the equivalence of five definitions of contiguity and some useful
corollaries of the definitions. Propositions 5 and 6, dealing with joint limiting
distributions, are easy. Special cases have appeared in the literature. (See Le
Cam [1960], Hall and Loynes [1977] for instance.) The special case of limiting
Gaussian distributions is briefly mentioned in Proposition 7. Other results of
this type, for infinitely divisible limit distributions, are given in Chapter 16 as
well as in Le Cam [1960]. A particular case occurs in Behnen and Neuhaus
[1975]. The chapter ends with some results of Lindae [1972]. Theorem 1 of
Section 4 is particularly important. It is one of very few links between the
weak and strong convergences of experiments.

As explained earlier in this Introduction, we attempted to state results as
much as possible so that they could be read as approximation theorems instead
of limit theorems. Chapter 7 is an exception. It deals exclusively with limit
theorems. Proposition 1 is about a relation between limit experiments and
experiments obtained from taking limits in the sense of distributions. The
latter are always weaker than the former. The situation where the two limits
are equivalent deserves special mention. It is described here in terms of
“stable” and “distinguished” sequences of statistics. It is shown that a sequence
is distinguished only if one can approximately recover from it the likelihood
ratios, and that in a nearly continuous manner. (See Theorem 1, and Proposi-
tion 2, Section 3). Theorem 2, Section 3 says that a sequence {T,} of statistics
is “stable” if and only if any other sequence {7, }, such that T, — T, tends to
zero in probability, is also asymptotically equivalent to T, for all statistical
purposes. The results are improvements on statements given in Le Cam
[1972].

Section 4 deals with a form of what is sometimes called the Hajek—Le Cam
asymptotic minimax theorem. The name comes from the works of Le Cam
[1953], Hajek [1972], and Le Cam [1972]. Hajek’s paper of 1972 contains
other results on local asymptotic admissibility. A fairly general form of the
results is given in Section 5, Theorem 1. This is adapted from Le Cam [1979].

Chapter 8 deals with some properties related to invariance of distributions
or experiments under the operation of transformation groups. We have used
a form of the Markov—Kakutani fixed point theorem obtainable from the
arguments of F. Eberlein [1949]. For other results on almost invariant means
or amenable groups, see Greenleaf [1969].

The Markov—Kakutani result yields easily the existence of what could be
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called “almost invariant Markov kernels.” To make them actually invariant,
we rely on a massive sledgehammer: locally compact groups admit liftings
that commute with the group shifts (A. and C. Ionescu Tulcea [1967]). From
this one easily obtains a form of the celebrated Hajek convolution theorem,
from Hajek [1970], and some results of Torgersen [1972].

Section 4 of Chapter 8 deals with a peculiar phenomenon: In many situa-
tions statisticians pass to the limit for parameter spaces or statistics that are
“renormalized” by multiplying by sequences of numbers (or matrices) that
tend to infinity. Think, for instance, of the familiar \/71(9,, — ). The peculiar
phenomenon is that such renormalizations automatically imply certain in-
variance properties for the limits. We do this here for experiments and for
limiting distributions. For a different account see Jeganathan [1982].

Section 5, Chapter 8 deals with a particular matter that arises from the
above remark: If an experiment is invariant under shift and if it is an exponen-
tial family, what can it be? A partial characterization is given. It covers in
particular the so-called mixed normal experiments, but includes certain other
exponential families already described by E. Dynkin [1951].

Section 6 returns to invariance in general and gives a brief account of the
Hunt-Stein theorem and of the Hall-Ghosh—Wijsman-Stein theorem [Hall-
Ghosh-Wijsman [1965]), together with a variation by Torgersen [1976].

Chapter 9 is about infinitely divisible experiments. They occur readily as
approximations, or limits, for experiments involving many independent ob-
servations. The two basic types are the Gaussian shift experiments and the
experiments in which one observes Poisson processes. Every infinitely divis-
ible experiment can be obtained from direct products of Gaussian and Poisson
experiments. The Poisson experiments are characterized in Section 4, Lemmas
3 and 4. Their limits may involve Gaussian factors. They are described in
Proposition 1. Section 5 gives a very simple central limit theorem showing
that, for a finite parameter set, direct products of experiments that are indi-
vidually not too informative can be approximated by Poisson experiments.
This is extended in Proposition 4 to certain cases where the parameter space
1s infinite. Examples show that the result is not valid without restrictions.

Chapter 10 is about asymptotically Gaussian experiments, It gives a variety
of necessary and sufficient conditions for convergence of a sequence of experi-
ments to a Gaussian one. The natural parameterization for Gaussian experi-
ments is a Hilbert space. Most of the results are written in that framework.
The results were written many years ago. Many even preceded W. Moussatat’s
thesis [1976]. Since that time many authors, e.g., Millar [1979] and Beran
[1980], have found the Hilbert space approach convenient and useful in
nonparametric situations.

Theorem 1 is a basic asymptotic sufficiency result. Section 3 describes a
fairly general framework that I met in many applications. A particular feature
of it includes the possibility of replacing a parameter space by a space that is
“tangent” to it. I used this since the mid-1950s without any references to the
literature. That was so because, after a valiant effort, we did not find any.
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However, W. Moussatat pointed out that the same idea occurs in a paper of
H. Chernoff [1954]. It is hard to conceive that I had not heard Chernoff talk
about it, but I certainly did not recollect it. Section 3 ends with some results
on what has to be added to convergence of distributions to make experiments
converge to Gaussian ones. It partially reproduces results of Le Cam [1977].
The gist of it is that if one has asymptotically normally distributed random
vectors that behave as distinguished statistics, then the random part of the
logarithms of likelihood ratios must be closely approximated by linear func-
tions of these vectors.

Section 4 has to do with convergence in distribution to the standard
Gaussian cylinder measure of a Hilbert space. Lemma 6 and Proposition 3
relate that to approximations of experiments indexed by the full Hilbert space
by other experiments with a finite dimensional parameter space.

Section 5 is a digression intended mostly to show that for many stochastic
processes one can obtain limit Gaussian experiments. It uses certain martin-
gale limit theorems as suggested in Billingsley [1961] and Le Cam [1974].
For more recent results see P. Jeganathan [1981], Hall and C. Heyde [1980],
and Greenwood and Shiryayev [1985].

Section 6 returns to asymptotically Gaussian experiments indexed by a
Hilbert space. It gives a variety of asymptotic admissibility (or minimaxity)
results derivable from a basic result of T.W. Anderson [1955]. Most authors
prefer to Radonify the standard Gaussian cylinder measure of the Hilbert
space by plunging it into a suitable Banach space completion. This is the same
kind of thing as replacing white noise by a Wiener process. One can show that
this does not change at all the standard Gaussian shift experiment of the
Hilbert space. To obtain results about subconvex loss functions ! with finite
minimum risk, we have used instead an extension of the domain of definition
of the Gaussian cylinder measure. An extension of this kind seems to have
been used by Skohorod [1974]. One of the statements (Proposition 5 and its
Corollary) is that sets of the type B = {w: [(w) < a} must have polars that are
G.B. sets in the sense of Dudley [1967].

The arguments of Chapter 10 yield a number of results applicable in familiar
cases to asymptotics in shrinking neighborhoods of a fixed parameter value.
They are of little practical importance in cases where one desires to estimate
the value of a parameter. For that, one needs results of a more global character.
A particular set of results of that nature is given in Chapter 11. It relies on the
fact that, given an already well behaved auxiliary estimate, one can work in
a neighborhood of the estimated value and obtain more refined estimates that
are asymptotically sufficient.

Any statistician who has at some time tried to get an approximation to a
maximum likelihood estimate through Newton’s method will understand
immediately the spirit of that chapter. The technique used is the basis of the
assertions in Le Cam [1956] and more generally in Le Cam [1960].: Unfor-
tunately every time I wrote the necessary theory in what was supposed to be
a definitive form, someone came along with a problem in which my conditions
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were not quite satisfied. Thus it appeared necessary to write down a rather
general version of the theory. The version to be found here covers every case
in which finite dimensional Gaussian shift approximations exist. It can
be specialized to cases where appropriate Euclidean parameterizations are
assumed. It also covers parameterizations through differentiable manifolds.

A previous version used tangent spaces, as in Chapter 10, Section 3. One
of my friends complained that “Tu 1’as écrit exprés pour qu’'on ne puisse pas
le lire.” That was not true. However, that version was unable to cope with a
very simple problem on logistic models brought to me by Clare Mahan
[1979]. The new version is hopefully not subject to such difficulties.

The basic construction involves certain quadratic expressions that could be
used as approximations for the logarithms of likelihood ratios of Gaussian
experiments. In applications, the matrices used in these quadratics are often
random, thus we have allowed that. There are cases in which the random
character of the matrices is very essential; the construction still works.

Thus, the so-called “locally asymptotically mixed normal” families come
under the scope of the method. Even though the chapter starts with that
degree of generality, what it aims for is only the locally asymptotically
Gaussian case.

Section 2 gives a few supplementary explanations on the why and how of
the framework used here. Section 3 describes the items to be used in the
construction and the construction itself. The basic construction assumes that
certain quadratic forms are available. An alternate form uses the parallelogram
identities to construct the necessary quadratic forms. ;

Section 4 gives a series of definitions relating to approximations of loga-
rithms of likelihood ratios by quadratic expressions. The point is that the
construction of Section 3 fits quadratics to these logarithms on a small set.
One wants the approximations to hold on larger sets. Section 5 records such
an approximability result in the form of Theorem 1 and a variant, Theorem
2, using quadratics obtained by the mid-point method. One of the conditions
placed on the items used in the construction is a cardinality restriction on the
range of the auxiliary estimates. It is shown that if one has estimates that
converge at the right rate one can discretize them to satisfy the required
restriction.

Section 6 specializes the results of Section 5 to the asymptotically Gaussian
situation. Besides the basic approximability requirement (G1) of Definition 1,
it uses various conditions that bear on the items used in the construction, as
in Section 5. It is shown later on (Lemma 4 and Proposition 5) that, under
(G1) and a few other restrictions, the basic sets and quadratics of the construc-
tion can themselves be constructed. Thus the only very essential assumption
to be made otherwise is the existence of good auxiliary estimates. Even though
the asymptotically finite dimensional case is the only one for which entirely
satisfactory results exist, we have indicated some possibilities for precompact
infinite dimensional situations. In the asymptotically Gaussian case one needs
to work with random quadratic forms and with nonrandom ones. There are
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many possibilities depending on what needs to be achieved. We have indicated
the possibility of constructing several families of quadratic forms, with dif-
ferent properties. Theorem 1 gives a basic approximation property. Proposi-
tion 1 records some of the usual implications for convergence of distributions.
Theorem 2 is an aside that may be useful to deal with nuisance parameters.
Theorem 3 is a basic result on asymptotic sufficiency, imitated from Le Cam
[1956] and Le Cam [1960]. These theorems do not depend very much on the
local structure of the underlying parameter spaces. The assumptions most
often used in the literature imply that, locally, the structure of the parameter
space is very much like that of an entire Euclidean space. This leads to
Definition 8 and some of its consequences.

Section 7 specializes the results of Section 6 to those cases commonly
referred to as LAN in the literature. They assume a Euclidean structure for
the parameter space and special properties of the quadratic forms and norms
used.

Section 8 is aimed at showing that one can effectively reduce the approxi-
mately Gaussian case to the heteroschedastic Gaussian one by small distor-
tions. Results of this nature occur in Wald [1943] and Le Cam [1956].
Michel and Pfanzagl [1970] show that one can approximate the experiments
by others where the likelihood ratios have exactly the Gaussian form, except
that they are multiplied by functions of 8 that tend to unity. Section 9 records
optimality properties for the standard tests used in the Gaussian case. Then
it shows how to translate them for the asymptotic framework. It is imitated
from Wald [1943]. It also discusses very briefly the locally asymptotically
mixed normal situation. ;

Section 10 is a digression on chi-square, minimum chi-square estimates, and
similar topics. It is taken mostly from my class notes of 1959 and before.
However, we have added some techniques of Rao and Robson [1974]. Some
additional information can be found in Dudley [1976] and in Le Cam, Mahan,
and Singh [1983].

Chapter 12 is about convergence properties for posterior distributions.
Throughout, the attitude is to look at joint distributions and not at what
happens at particular values of the parameter 6. Section 2 deals with some
simple inequalities relating integrated L,-distances between posterior dis-
tributions to distances between joint distributions. It also contains some
results about the possibility of “localization™ of the arguments. It does not
cover the results of G. Steck [1957] that rely on equicontinuity assumptions.
Section 3 is a rewrite of the first part of Le Cam [1958]. It tries to say that
Bayes estimates will converge at the maximum possible rate. Section 4 deals
with situations where the posterior distributions are asymptotically Gaussian.
A result of the same general occurs in Laplace [1820].

Several of the results collected here were taken from an unpublished paper
of Le Cam [1968]. Proposition 5 occurs in Le Cam [1974] but the proof given
there is not correct. For further results see Jeganathan [1980], and Basawa
and B.L.S. Prakasa Rao [1980].



