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Preface

The appearance of Banach’s book [8] in 1932 signified the beginning of a syste-
matic study of normed linear spaces, which have been the subject of continuous
research ever since.

In the sixties, and especially in the last decade, the research activity in this area
grew considerably. As a result, Banach space theory gained very much in depth as
well as in scope. Most of its well known classical problems were solved, many
interesting new directions were developed, and deep connections between Banach
space theory and other areas of mathematics were established.

The purpose of this book is to present the main results and current research
directions in the geometry of Banach spaces, with an emphasis on the study of the
structure of the classical Banach spaces, that is C(K) and L,(1) and related spaces.
We did not attempt to write a comprehensive survey of Banach space theory, or
even only of the theory of classical Banach spaces, since the amount of interesting
results on the subject makes such a survey practically impossible.

A part of the subject matter of this book appeared in outline in our lecture notes
[96]. In contrast to those notes, most of the results presented here are given with
complete proofs. We therefore hope that it will be possible to use the present book
both as a text book on Banach space theory and as a reference book for research
workers in the area. It contains much material which was not discussed in [96], a
large part of which being the result of very recent research work. An indication to
the rapid recent progress in Banach space theory is the fact that most of the many
problems stated in [96] have been solved by now.

In the present volume we also state some open problems. It is reasonable to
expect that many of these will be solved in the not too far future. We feel, however,
that most of the topics discussed here have reached a relatively final form, and
that their presentation will not be radically affected by the solution of the open
problems. Among the topics discussed in detail in this volume, the one which seems
to us to be the least well understood and which might change the most in the
future, is that of the approximation property.

We divided our book into four volumes. The present volume deals with
sequence spaces. The notion of a Schauder basis plays a central role here. The
classical spaces which are in the most natural way sequence spaces are ¢, and /,,
1 <p<co. Volumes II and III will deal with function spaces. In Volume II we shall
present the general theory of Banach lattices with an emphasis on those notions
concerning lattices which are related to L,(u) spaces. Volume III will be devoted
to a study of the structure of the spaces L,(0, 1), C(K) and general preduals of
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L;(p) spaces. The division of the common Banach spaces into sequence and function
spaces is made according to the usual practice. It should be remembered, however,
thatseveralspaces have natural representations both as sequence and function spaces.
The best known example is the separable Hilbert space, which can be represented
both as the sequence space /, and as the function space L,(0, 1). A less trivial example
is the space /,, 1 <p<co, which is isomorphic to the function space H,(D) of the
analytic functions on the disc D={z; |z| <1} with [|f]|=([|f(2)|? dx dy)"? <o
(cf. [88]). Also, the spaces C(0, 1) and L,(0, 1), 1 <p <o, have Schauder bases, and
thus it is convenient sometimes to use their representations as sequence spaces.

In Volume IV we intend to présent the local theory of Banach spaces. This theory
deals with the structure of finite-dimensional Banach spaces and the relation
between an infinite-dimensional Banach space and its finite-dimensional subspaces.
A central part in this approach to Banach space theory is played by the evaluation
of various parameters of finite-dimensional Banach spaces. The role of the classical
finite-dimensional spaces, that is of the spaces /3, 1 <p<oo, n=1, 2,... in the local
theory of Banach spaces is even more central than the role of the classical spaces
in the general theory of Banach sequence spaces and function spaces.

We sketch now briefly the contents of this volume. Chapter 1 contains a quite
complete account of the main results on Schauder bases in general Banach spaces.
Several notions related to Schauder bases—the various approximation properties,
general biorthogonal systems and Schauder decompositions—as well as some
examples are discussed in detail.

Chapter 2 is devoted to a study of the spaces ¢, and /,, 1 <p <0, and to some
extent also of /. Section a is devoted to an examination of the basic properties of
these spaces, some of which are shown to characterize these spaces among general
Banach spaces. The other sections of Chapter 2 are basically independent of each
other and can thus be read in any order. In Sections b and ¢ we discuss certain ideals
of operators on general Banach spaces and show how they can be used in the study
of the structure of the classical sequence spaces. Section 4 contains a structure
theorem for “nice” subspaces of ¢, and /, as well as examples of subspaces which
are not ‘“‘nice” (i.e. subspaces which fail to have the approximation property).
This section contains also a discussion of general results related to the approxima-
tion property which complement the treatment of this property in Section e of
Chapter 1. Section f contains an example of an infinite-dimensional Banach space
which fails to have any of the classical sequence spaces as a subspace and also
criteria for general Banach spaces to have subspaces isomorphic to ¢, and especially
to /,. The final section of Chapter 2 deals with the extension properties of ¢, and /.,
the lifting property of /;, and the closely related topic of the automorphisms of
these spaces.

In Chapter 3 we discuss the special properties of symmetric bases and the
relation between symmetric bases and general unconditional bases. A large part
of this chapter is devoted to results and examples related to the possible charac-
terizations of ¢, and /,, 1 <p <o, in the class of all spaces with a symmetric basis.
The final chapter of this volume is devoted to a detailed study of the structure of
some particular classes of spaces with symmetric bases, mainly Orlicz sequence
spaces. The main emphasis is again on the relation between these spaces and the
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spaces ¢, and /,. Several examples given there demonstrate how much more
complicated the structure of general Orlicz sequence spaces is, as compared to that
of /I, spaces. In section d it is shown that Orlicz sequence spaces enter naturally into
the study of spaces like /, @ I, with p#r. In Vol. III it will be shown that Orlicz
sequence spaces arise naturally in the study of the structure of subspaces of
L;0:-D).

We assume that the reader is familiar with the basic results of real analysis and
functional analysis which are usually covered in first year graduate courses in these
subjects. An acquaintance with the main results in chapters I-VI of [33] will
certainly suffice (much less is actually needed for being able to read this book).

The bibliography contains only those papers which are actually quoted in the
text. We tried to indicate in the text the source of the main results which we
present. The reference list is, however, far from being complete. Reference to papers
where the basic results in Banach space theory were first proved can be found, for
example, in [28] and [33]. Further references on bases may be found in [135].
References to further literature on Orlicz spaces may be found in [75].

The overlap between this book and existing books on related topics is very small.

We would like to acknowledge the contribution of G. Schechtman, who read
the entire manuscript and made several very valuable suggestions, and of J. Arazy,
who was very helpful in proofreading this volume and eliminated several mistakes.
We also wish to thank Z. Altshuler and Y. Sternfeld for their help. We are grateful
to Danit Sharon who expertly carried out the task of typing the manuscript of this
book. We are also indebted to the U.S.-Israel Binational Science Foundation for
partial support. 3

Finally, we would like to thank Springer-Verlag and especially Roberto Minio
for their cooperation and help in all the stages of the preparation of this book.

Jerusalem Joram Lindenstrauss
January 1977 Lior Tzafriri



Standard Definitions, Notations and
Conventions

For most of the results presented in this book it does not matter whether the field
of scalars is real or complex. In the isometric theory there are some differences
(usually minor) between real and complex spaces. As a rule we shall work with real
scalars and, in a few places, we shall indicate the changes needed in the complex
case. In a few instances e.g. where spaces of analytic, functions are involved or
where spectral theory is used we shall use complex scalars.

By L,(1)=L,(2, 2, 1), 1<p<co we denote the Banach space of equivalence
classes of measurable functions on (£, 2, u) whose p’th power is integrable
(respectively, which are essentially bounded if p=c0). The norm in L () is defined
by || f1] = (| f(w)|® du(w))*” (ess sup | f(w)| if p=00). If (2, Z, p) is the usual Lebesgue
measure space on [0, 1] we denote L,(u) by L,(0, 1). If (I, Z, ) is the discrete
measure space on a set I, with u({y})=1 for every y € I, we denote L,(n) by
I(I'). If T is the set of positive integers we denote /,(I") also by /, while if I'=
{1,2,..., n}, for some n<oo, we denote /,(I") by /2. The subspace of /,(I"), of those
functions which vanish at co, is denoted by co(I") (if I' is the set of positive integers
we denote this space by ¢,). The subspace of /,, consisting of convergent sequences
is denoted by ¢. For a compact Hausdorff space K we denote by C(K) the Banach
space of all continuous scalar-valued functions on X with the supremum norm.
If K is the unit interval [0, 1] in its usual topology we denote C(K) by C(0, 1).

In a Banach space X we denote the ball with center x and radius r, i.e. {y;
||ly—x||<r}, by Bx(x, r). If the space X is clear from the context, we simply write
B(x, r). The unit ball Bx(0, 1) of X is denoted also by By. For a sequence {x,}*-,
of elements of X we denote by span {x,}z=1 the algebraic linear span of {x,}2-,
i.e. the set of all finite linear combinations of {x,}7- ;. The closure of span {x,}2-,
is denoted by [x,]7-,. A similar notation is used for the span of a set other than a
sequence. For a set 4 = X its norm closure is denoted by 4, e.g. [x,.],","=1=_sﬁ1
{*a}n=1. The convex hull of a sequence {x,}7~, is denoted by conv {x,}*.,; the
closed convex hull by conv {x,}.;.

The term ““operator” means a bounded linear operator unless specified other-
wise. The space of all operators from X to Y with the usual operator norm is
denoted by L(X, Y). An operator T € L(X, Y) is called compact if T By is a norm
compact subset of Y. The identity operator of a Banach space X is denoted by Iy
(or simply by 7 if X is clear from the context). For an operator T € L(X, Y) the
notation T, denotes the restriction of T to the subspace Z of X.

Two Banach spaces X and Y are called isomorphic (denoted by X~ Y) if there
exists an invertible operator from X onto Y. The Banach-Mazur distance coefficient




Xii Standard Definitions, Notations and Conventions

d(X, Y) is defined by inf ||T||||T-*||, the infimum being taken over all invertible
operators from X onto Y (if X is not isomorphic to Y we put d(X, Y)=o0). Notice
that d(X, Y)> 1, for every X and Y, and that d(X, Y) d(Y, Z)>d(X, Z), for every
X, Y and Z. If there exists an invertible operator T from X onto Y so that ||T||=
[|T-|=1 (i.e. ||Tx||=]||x||, for every x € X) we say that X is isometric to Y. In
this case d(X, Y)=1 (the converse is false in general; it is possible that d(X, ¥Y)=1
but that the infimum in the definition of d(X, Y) is not attained i.e. X is not
isometric to Y). An operator 7T € L(X, Y) is said to be an isomorphism into Y if
there is some constant C >0 so that ||7x|| > C||x|| for every x € X. In this case 7T ~?
is a well defined element in L(TX, X).

A closed linear subspace Y of a Banach space X is said to be a complemented
subspace of X if there is a bounded linear projection from X onto Y, or what is the
same, if there exists a closed linear subspace Z of X so that X is the direct sum of Y
and Z, i.e. X=Y @ Z. We shall also use some direct sums of infinite sequences of
Banach spaces. If { X}~ is a sequence of Banach spaces we define the direct sum

of these spaces in the sense of /,, 1 <p <00, namely ( E &) Xn),, as the space of all
n=1
sequences x=(x;, Xy, ...), With x, € X, for all n, for which ||x|| =( % ||x,.||’)1”<
n=1

co. Similarly, ( % @ X,.)o denotes the direct sum of {X,}., in the sense of ¢,
n=1

i.e. the space of all sequences x=(x;, Xs, ...), With x, € X,, for all n, for which
lim ||x,||=0. The norm in this direct sum is taken as ||x||=max [|x,||. We shall
n n

occasionally use also other types of infinite direct sums. These will be defined in the
proper places in the text.

Besides the norm (or strong) topology of a Banach space X we often use some
other topologies. If Y is a subspace of the dual X* of X then the Y-topology of X
is the weakest topology making all the elements of Y continuous. A basis for the Y
topology is obtained by taking all the sets of the form V(x, e, A)={u; |x*(u)—
x*(x)| <e, x* € A}, where x € X, e>0 and A4 is a finite subset of ;Y. If Y=X* the Y
topology is called the weak topology (w topology). If X=Z* and we take as Y the
canonical image of Z in Z**= X* we obtain the w* topology induced by Z (if Z
is clear from the context we simply talk of the w* topology). Convergence of
sequences in the w topology (resp. w* topology) is denoted by x, => x or w lim x,=

n

x (resp. x, Z>x or w* lim x,=x). An operator T € L(X, Y) is said to be w compact
n

if TByisa compact set in Y, in its w topology (i.e. a w compact set in Y).

Whenever we consider a Banach space X as a subspace of its second dual X**
we assume that it is embedded canonically. For a subset 4 < X we denote by A+
the subspace {x*; x*(x)=0, x € 4} of X*. For a subset 4 = X* we denote by 47
the subspace {x; x*(x)=0, x* € 4} of X. For every subset A = X we have 41T > 4
and equality holds if and only if A4 is a closed linear subspace.

Besides subspaces of Banach spaces we shall also study quotient spaces. An
operator T: X —» Y is called a quotient map if T By=By. A Banach space Y is
isomorphic to a quotient space of a space X if and only if there exists an operator
T from X onto Y. If such a T exists then Y= X/ker T, where ker T={x; Tx=0},
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and Y* is isomorphic to the subspace (ker T)* of X*. Similarly, if Z is a subspace
of X then Z* is isometric to the quotient space X/(Z*).

Among the general notations used in this book we want to single out the
following. For a positive number S we denote by [S] the largest integer <.S. For
a set A we denote by A the cardinality of 4. If 4 and B are sets we put A~ B=
{x,x€ A, x ¢ B}.
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1. Schauder Bases

a. Existence of Bases and Examples

The aim of this volume is to describe some results concerning sequence spaces, i.e.
those Banach spaces which can be presented in some natural manner as spaces of
sequences. In general, such a representation is achieved by introducing in the space
a sort of “coordinate system”. There are, obviously, many different ways of giving
a precise meaning to the terms “Banach sequence spaces’ and “coordinate systems”.
The best known and most useful approach is by using the notion of a Schauder
basis.

Definition 1.a.1. A sequence {x,};-, in a Banach space X is called a Schauder
basis of X if for every x € X there is a unique sequence of scalars {a,}-, so that

o

X= D @,X, A sequence {x,}r-; which is a Schauder basis of its closed linear span

n=1
is called a basic sequence.

In this book we shall not consider any type of bases in infinite-dimensional
Banach spaces besides Schauder bases. We shall therefore often omit the word
Schauder. In addition to Schauder bases we shall only encounter algebraic bases
in finite-dimensional spaces. This should not cause any confusion. As a matter of
fact, quantitative notions concerning Schauder bases (like the basis constant defined
below) have a meaning and will be used also in the context of algebraic bases in
finite dimensional spaces.

Evidently, a space X with a Schauder basis {x,}7-; can be considered as a

@0

sequence space by identifying each x= Zl a,x, with the unique sequence of

o
coefficients (ay, a,, as,...). It is important to note that for describing a Schauder
basis one has to define the basis vectors not only as a set but as an ordered sequence.

Let (X, || ||) be a Banach space with a basis {x,}2-;. For every x= i a,x, in
n=1

n
X the expression |||x|||=sup " 2. a;xi is finite. Evidently, |||-||| is 2 norm on X
n i=1

and ||x||<|||x||| for every x € X. A simple argument shows that X is complete also
with respect to |||-||| and thus, by the open mapping theorem, the norms ||-|| and
[||-]]] are equivalent. These remarks prove the following proposition [8].

Proposition 1.a.2. Let X be a Banach space with a Schauder basis {x,}7- . Then the
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projections P,: X — X, defined by P, (2:1 a,x,) = ‘il a;x;, are bounded linear operators
and sup || P,|| <co.
n

The projections {P,};-, are called the natural projections associated to
{*a}n=1; the number sup || P,|| is called the basis constant of {x,}-,. A basis whose

basis constant is 1 is called a monotone basis. In other words, a basis is monotone if,

" .
} 1S non-
n=1

decreasing. Every Schauder basis {x,}r=1 is monotone with respect to the norm
|||x|||=sup || P,x|| which was already used above. Indeed,
n

n
for every choice of scalars {a,}7- ;, the sequence of numbers {” > X
{=1

| Pox][| =sup || PpPox|| = sup || Pmx]|<][[x]]] .
m l<sms<n

Thus, given any Schauder basis {x,}7-; of X, we can pass to an equivalent norm
in X for which the given basis is monotone.

There is a simple and useful criterion for checking whether a given sequence is
a Schauder basis.

Proposition 1.a.3. Let {x,}7-, be a sequence of vectors in X. Then {x,}7-, is a
Schauder basis of X if and only if the following three conditions hold.
(i) x,#0 for all n. 7
(ii) There is a constant K so that, for every choice of scalars {a}{>, and integers
n<m, we have

n
[0
i=1

(iii) The closed linear span of {x,}w=1 is all of X.

m

SK"Z ax;
i

=]

The proof is easy. The necessity of (i) and (iii) is clear from the definition, while that
of (ii) follows from 1.a.2. Conversely, if (i) and (ii) hold then ,21 a,x,=0 implies
that a,=0 for all n. This proves the uniqueness of the expansion in terms of
{Xa}r=1. In order to prove that every x € X has such an expansion it is enough, in
view of (iii), to show that the space of all elements of the form él a,x, is a closed

linear space. This latter fact can be easily proved by using (ii). [

Obviously conditions (i) and (ii) of 1.a.3, by themselves, form a necessary and
sufficient condition for a sequence {x,}7-; to be a basic sequence. It is also worth-
while to observe that in case we can take K=1 it is enough to verify (ii) for m=n+1.

A basis {x,}z., is called normalized if ||x,||=1 for all n. Clearly, whenever
{xn}n=1 is a Schauder basis of X, the sequence {x,/||x,|[}s=1 is a normalized basis
in X.
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Before proceeding with the general discussion we present some examples of

n
bases. The unit vectors e,=(0, 0, 0,..., 1, 0,...) form a monotone and normalized

basis in each of the spaces ¢, and 1, 1<p <co. An example of a basis in the space c,
of convergent sequences of scalars, is given by

sed=(l, 128 fand dorn >l o =te:
The expansion of x=(a;, a,,...) € ¢ with respect to this basis is

x=(lim a,)x; + (a; —lim a,)x,+ (a, —lim a,)xg+ :-- .
n n n

An important example of a Schauder basis is the Haar system in L,(0, 1),
1<p<oo.

Definition 1.a.4. The sequence of functions {x,(¢)}x-1 defined by x,(¢)=1 and, for
kisi0de 2:48 12 k3203425

1 if te[(21—-2)27F"1, 2I—-1)27F~1]
x¢a(t)=< =1 if te(I—-1)27%"1,2].2"k-1]
0 otherwise

is called the Haar system.

The Haar system is (in its given order) a monotone (but obviously not normal-
ized) basis of L,(0,1) for every 1<p<oco. Indeed, since the linear span of the
Haar system contains all the characteristic functions of dyadic intervals (i.e.
intervals of the form [/-27%, (I+1)-27¥]), itis clear that (iii) of 1.a.3 holds. We have
only to verify that (ii) holds with K=1. Let {@;};2, be any sequence of scalars, let

n n+1l
n be an integer and let f (t)=(2l ax(t) and g(t)=l_i1 a;xi(t). The only difference

between f and g is that on some dyadic interval 7 where f has the constant value b,
say, g has the value b+a, ., on the first half of 7 and b—a, ., on the second half.
Since, for every p>1, [b+a,+1|7+|b—a, 1|7 >2|b|? we get that || f]|<]|g]|.

By integrating the Haar system or more precisely by putting

=1 eull)= f ) ) W T

we obtain another famous and important basis. The sequence {p,}2-; is called the
Schauder system. The Schauder system is a monotone basis of C(0, 1). Indeed,
the linear span of the {p,}7-; consists exactly of the continuous piecewise linear
functions on [0, 1] whose nodes are dyadic points. This shows that (iii) of 1.a.3
is satisfied. Since, for every integer n, the interval on which the function ¢, ()
is different from 0 is such that on it all the functions {p,(¢)}}-; are linear it follows
immediately that (ii) of 1.a.3 holds with K=1.
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Schauder bases have been constructed in many other important Banach spaces
appearing in analysis. Of particular interest in this direction are the results of Z.
Ciesielski and J. Domsta [18] and S. Schonefeld [132] who proved the existence of
a basis in C¥(I™) (=the space of all real functions f(t,, #,,..., t,), t; € [0, 1] which
are k times continuously differentiable, with the obvious norm) and the result of
S. V. Botschkariev [13] who proved the existence of a basis in the disc algebra
A (=the space consisting of all the functions f(z) which are analytic on |z| <1 and
continuous on |z|< 1, with the sup norm). In these papers an important role is
played by the Franklin system. The Franklin system consists of the sequence
{fa(®)}2>=1 of functions on [0, 1] which are obtained from the Schauder system
{Pa}n=1 by applying the Gram-Schmidt orthogonalization procedure (with respect
to the Lesbegue measure on [0, 1]). The Franklin system is (by definition) an ortho-
nomal sequence which turns out to be also a Schauder basis of C(0, 1). For a
detailed study of the Franklin system we refer to the above mentioned papers as
well as to [17].

The fact that in the common spaces there exists a Schauder basis led Banach to
pose the question whether every separable Banach space has a basis. This problem
(known as the basis problem) remained open for a long time and was solved in the
negative by P. Enflo [37]. We shall present later on in this book (in Section 2.d)
a variant of Enflo’s solution.

The question whether every infinite-dimensional Banach space contains a basic
sequence has, however, a positive answer. This simple fact was known already to
Banach.

Theorem 1.a.5. Every infinite dimensional Banach space contains a basic sequence.
The proof, due to S. Mazur, is based on the following lemma.

Lemma 1.a.6. Let X be an infinite dimensional Banach space. Let B< X be a finite-
dimensional subspace and let ¢e>0. Then there is an x € X with ||x||=1 so that
[I¥l|<+&)||y+Ax|| for every y € B and every scalar A.

Proof of 1.a.6. We may clearly assume that e<1. Let {y;}*, be elements of norm
1 in B such that for every y € B with ||y||=1 there is an i for which ||y—y|| <e/2.
Let {y*}., be elements of norm 1 in X* so that y¥(y;)=1 for all i, and let xe X
with ||x]|=1 and yj{#(x)=0 for all i. This x has the desired property. Indeed, let
y € Y with ||y||=1, let i be such that ||y—y;||<e/2 and let A be a scalar. Then

|y +2x]| > || i+ Ax|| — /22 pF(pi+ Ax) —ef2=1—¢/22 || y||/(1 +¢). O

Proof of 1.a.5. Let & be any positive number and let {e,};-; be positive numbers
such that ﬁ (1+e,)<1+e. Let x; be any element in X with norm 1. By 1.a.6 we
n=1

can construct inductively a sequence of unit vectors {x,};>- 5 so that for every n>1

[I¥|l<A +e,)||y+ A%y 41| for all y € span {x,,..., x,} and every scalar A.



