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NEW APPROACHES TO THE GRAPHICNESS OF A
MATROID

Dedicated to Professor Wu Wenjun on the occasion of his 80-th birthday

LIU Yanpei
(Institute of Mathematics, Northern Jiaotong University, Beijing 100044 China)

Abstract. This article provides some new characterizations for testing if a matroid is
graphic. One of them can be seen as a consequence deduced from the Wu's theory on the
planarity of graphs.

Key words. Matroid, graphicness, basic order.

1. Introduction

Many equivalent definitions used for matroids appear in the literature. We here adopt that
a matroid is a family Z of subsets on a finite set E, which is called the base set, with the two
axioms below being satisfied. The cardinality of E is called the order of M, and that of Z, the
size of M.

Axiom 1 No member of Z is a proper subset of another.

Axiom 2 Let a and b be two distinct elements of E. Let X and Y be members of Z such
that a€ X NY and b € X \ Y. Then, there exists Z € Z suchthat be ZC (X UY) —a.

A matroid is usually denoted by M = (2, E), or simply M when it is not necessary to
identify the base set E. Members of Z are said to be circuits. An element of E is called a cell
of M. Two matroids M; = (2, E;) and M, = (23, E3) are said to be isomorphic if there is a
bijection 7 : E; = E; such that VC; = {e;, e, ,€,} € 2y,

T(Cl) = {1(61)17(32)a i 17(31)} — C2 € 22 (1)

Two isomorphic matroids M; and M are represented by M; = M,. Although only one element
is allowed to be a circuit which is called a loop, we shall never consider a matriod with a loop
because loops are inessential for our purpose here.

Let G = (V, E) be a graph. It is easily checked that the set Z(G) of all circuits in G forms
a matroid M(G) = (£(G), E) which is called the circuit matroid of G. Similarly, the set Z*(G)
of all cocircuits in G forms another matroid M*(G) = (£*(G), E) called the cocircuit matroid
of G.

For a matroid M, if there is a graph G such that M is isomorphic to M(G), or M*(G), then
it is respectively said to be graphic, or cographic.

The determination of a matroid for the graphicness or cographicness was first done by Tutte
in the 50s/!). However, in this article, we provide some new characterizations of the graphicness
or cographicness of a matroid in a way different from Tutte’s.

Although one of them can be seen as a consequence deduced from the Wu’s theory [2-3]
on the planarity of graphs with involvements, to find a direct way for doing so is still an open
problem.

15271
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2. Spaces Over GF(2)

Let £ be the space generated by {e | Ve € E} and denoted by (e | Ve € E) over a field F.
For a vector f € £, let E(f) be the subset of E, in which each element corresponds to a nonzero
component of f. We also employ the notation f itself instead of E(f) if there is no confusion
and call E(f) the support of f. An integral vector f, that is, one with all its components being
integers in the group N of vectors over the integer ring, is called elementary if the support
E(f) is minimal for A, i.e., no vector g in A has the property that E(g) is a proper subset of
E(f).
If £ is binary, i.e., over F' = GF(2), then it is easily checked that the family Z(N;2) which
consists of all the subsets corresponding to the elementary vectors in N forms a matroid which
is denoted by M(A;2). A matroid which is isomorphic to M(N/;2) for a group A, a subspace
as well if N C € over GF(2) is said to be binary as well. In general, we may take F' to be
the rational field or the real field. If an elementary vector for a group A of vectors over the
integer ring has all its nonzero components be 1 or 1, then it is said to be primitive. It is
also easily shown that the family of subsets which correspond to primitive vectors in A forms
a matroid as well, which is denoted by M(A'). A matroid which is isomorphic to M(N) for a
group N, called regular, i.e., to each elementary vector there corresponds a primitive one with
the same support, is said to be regular as well. Because for each primitive vector there exists
an elementary one with the same support, we soon see that any regular matriod is binary.

Lemma 1 If M = (2, E) is a binary matroid, then VC,,C; € 2,

WseZ2:CCOEPC (2)

where C; @ C3 = (C1 U C2)\(C1 N Cy) is called the symmetric difference between Cy and Cjy.

Proof Because M is binary, there exists a group A in £ over GF(2) such that M is isomorphic
to M(N;2). Since the vector f = f(C1)+ f(Ca2) € N and E(f) = C, P Ca € Z(N;2) = Z, we
have an elementary vector fo in A such that E(fy) C E(f). Hence, C3 = E(fo) satisfies (2). I

If M = (2, E) is a binary matroid which is isomorphic to M (N) for N as an Abelian group
in £ over GF(2), then the matriod which is isomorphic to M (A1) for the orthogonal subspace
N2 of N in € is called the dual matroid of M and denoted by M* = (2*, E). Members of Z*
are called cocircuits. Of course, Z* is a binary matroid as well.

Lemma 2 If M is a binary matroid and M*, its dual, then VC € Z,C* € Z*,

[eNC* =0 (mod 2). (3)

Proof A direct consequence of the orthogonality between Z and Z°*. { ]

A subset of E which does not contain a circuit is said to be independent, and otherwise,
dependent. Because @ is never a circuit, we see that § is independent. Moreover, it is also easy
to verify that any subset of an independent subset is independent.

Lemma 3 For a binary matroid M = (2, E), let Cy and C; be two distinct circuits and
A=C@PCjy. Then, 3Cy,---,C, € Z >

A= i Ci (4)
=1

where the summation represents the disjoint union of sets.
Proof Suppose M is isomorphic to M(N) for N in £ over GF(2). We know that every
non-zero vector of N corresponds to a dependent subset of E. From Lemma 1, A contains a

&
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circuit C;. Because the vector f(A;) for 41 = A@C; is in N, A, is dependent either. Let
C; be a circuit in A;. We consider A3 = A; @ C; instead of A;. From the finiteness of E, the
expression (4) can always be found. I

Because for two independent subsets X and Y, if | X |=| Y | +1, then there exists z € X\Y
such that Y U z is independent, it can be verified that all mazimal independent subsets, i.e.,
each of which is not a proper subset of an independent subset, have the same cardinality which
is called the rank of the matroid. A maximal independent subset is called a base denoted by
B(M), or simply B. We may also show that for e ¢ B, there is exactly one circuit in B U e,
which is called the fundamental circuit denoted by C(B;e) of e on the matroid for B.

Lemma 4 For a binary matroid M = (Z,E), let B be a base of M. Then, for a circuit
C, C\B = {ey, €3, -, e,}, we have

C= @ C(B;e). (5)

1<i<s

Proof From what was discussed in [4, Chapter 3], we see that all the fundamental circuits
form a basis of the subspace generated by the group A for which M is isomorphic to M(N;2).
Because any circuit corresponds to a vector in A, the expression of C as a linear combination
of vectors w.r.t. the basis just corresponds to (5). |

Let M = (2, E) be a matroid, not necessarily binary. For a subset S of E, let

L={A|(ACS)A(A€Z)}=2NS.

Easy to check that L = (£, S) is a matroid. L is called the reduction of M to S and denoted
by M - S. For asubset T C E, let

P={A|A=CNT #0,C € £}.

Easy to check that P = (P, T') is a matroid as well. P is called the contraction of M to T and
denoted by M x T. A matroid which can be represented in the form (M - S) x T is called a
minor of M. It can be shown that a minor of a minor of a matroid M is a minor of M.

Lemma 5 A minor of a binary matroid is binary.

Proof Because the corresponding operations; reduction and contraction, on a group in
a space produce new groups in the space over GF(2), by the definition of binary matroid the
lemma is found. |

By no means any matroid is binary. It can be seen that the matroid U(4,3), whose base
set consists of four elements a,b,c and d with all the subsets which consist of three elements
as circuits, has two circuits {a,b,c} and {a,b,d} with the symmetric difference {c,d} without
a subset which is a circuit. From Lemma 1, U(4, 3) is not binary. Moreover, U(4, 3) is the only
non-binary matroid with the least order and size.

Lemma 6 For a binary matroid M,

BS,TCE: (M-S)xT=2U(4,3). (6)

Proof A direct consequence of Lemma 5. 1

Furthermore, all the concepts on independence, cocircuits, base, duality and so on introduced
above for binary matroids can be extended to those for general matroids. A subset of E is said
to be independent for a matroid M = (Z, E) not necessarily to be binary if it does not contain
a circuit in Z. A base of M is a maximal independent subset. Because all maximal independent
subsets have the same cardinality, the cardinality of a base is called the rank of M. A subset of
F is called a cocircuit for M if it is miminal for the property that it has non-null intersection

1523
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with any base of M. It can be shown that the family Z* of all cocircuits for M determines a
matroid on E which is called the dual matroid of M, denoted by M* = (Z*,E). Easy to see
that M** = M. The complement of a base of M on F is a base of M* which is called a cobase
of M. The cardinality of a cobase is called the corank of M. Because we also have that each
element in a cobase B of M forms exactly one circuit with its corresponding base B, the circuit
is call a fundamental circuit of M. Likewise, the cocircuit formed by an element in B with B
is called a fundamental cocircuit of M.

Lemma 7 For a matroid M not necessarily to be binary, the conditions (2-6) are all
equivalent one to another. 1

Because of the limitation of space, we are not allowed to present a complete proof of the
lemma, the reader is referred to [5-7),(8] and [9].

Theorem 1 A matroid M = (Z, E) is binary iff one of the conditions (2-6) is satisfied.

Proof From Lemmas 1-4 and Lemmas 6-7, it suffices to prove that one of the conditions
(2-6) is sufficient for M to be binary. We only take condition (5). If a subset S of E is
represented by the vector f(S) over GF(2) such that a component of f is non-zero, i.e. 1, iff
its corresponding element is in the subset S, then the symmetric difference on subsets is just
the addition (mod 2) on vectors. Because the condition (5) provides the expression of a vector
which corresponds to a circuit in M as a linear combination of vectors w.r.t. a basis, which
correspond to the fundamental circuits, it is allowed to extend all the linear combinations of
the vectors corresponding to fundamental circuits of M to a subspace N which is an Abelian
group as well in £ over GF(2). From Axiom 2 of a matriod, all the elementary vectors have to
be circuits in Z. Therefore, M = (Z,E) & M.(N;2), and hence is binary.

Lemma 8 A matroid M is binary iff so is its dual matroid M*

Proof Infact, M and M* are respectively produced by two subspaces: A and its orthogonal
N2 in €. The lemma is obtained.

From Lemma 8 and Theorem 1, we may soon find

Theorem 2 A matroid M = (2, E) is binary iff one of the following conditions is satisfied:

(i) For any two cocircuits C; and C3 of M, there exists a cocircuit C3 such that C3 C
C1eDCs;

(ii) For any two distinct cocircuits C; and Cj, the symmetric difference of them can be
exzpressed as a disjoint union of cocircuits of M;

(iii) For a cobase B = {ej,ea, - -€,}, any cocircuit can be represented by the symmetric
difference of the fundamental cocircuits;

(iv) The dual matroid M* does not have a minor isomorphic to U(4, 3). |

In fact, one may see that any subset of two elements in {a,b,c,d} is a base of the matroid

U(4,3) = ({abc, abd, acd, bed}, {a, b, c,d})

and hence a cobasis. That means U(4,3) = U*(4,3). A matroid whose dual matroid is isomor-
phic to itself is said to be self-dual. Thus, U(4, 3) is a self-dual matroid.

A matroid M on E is said to be representable over a field F if there exists a bijection
7 : E = V such that 7 preserves the linear independence where V is a subset of a vector space
over F. For a matroid M, if there exists a field such that M is representable over the field then
it is called representable.

Lemma 8 Let N be a regular group on E over the integer ring. Then, forany f #0,f € N,
being an integral vector, there exist primitive vectors fy, fa,---, fs which are with the same
support as [ such that

=Y f )
i=1
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Proof Let
sum(a) = Y | u(e) |

ecE

for a vector u € N. We may choose f to be one of those which do not satisfy the lemma with
the sum minimum if the lemma fails. Suppose g is the primitive vector with the same support
as f. We write h = f — g. Of course, if h = 0 then f = g. If h # 0, from the regularity, we
have sum(h) < sum(f) and E(h) = E(f). Therefore, h is a sum of primitive vectors with the
same support as f. In both cases, we find f is such a sum as the lemma indicates. This is a
contradiction to the choice of f. 1

For an integer p > 2, if an integral vector f has all its components with absolute values less
than p, then it is said to be standard for p.

Lemma 10 Let N be a regular group on E. Then for each g > 2 and for each integral
vector g € N, there is a standard vector f such that f = g (mod gq).

Proof For an integral vector j, let n,(g) be the number of elements e € E(g) : | j(e) | > q.
We may choose an integral vector f:

ng(f) = min{ny(g) | j = g(mod g)}.

If ng(f) > 0, suppose | f(a) |> g,8 € E(f). From Lemma 9, let the primitive vector h be
such that E(h) = E(f) and h(a) # 0. We write f; = f — gh. From | fi(e) |<| f(a) | and
f(a) < ¢ = fi(a) < g, we have ng(f1) < ng(f) with the equality iff fi(a) > ¢. If so, we may do
the same procedure for f; instead of f. From the finiteness of f(a) we may finally find f’ such
that ng(f’) < ng(f). This is a contradiction to the choice of f. 1

Lemma 11 Let M = (Z,E) be a regular metroid. Then for any prime p, there exists a
regular group N on E over GF(p), the field of characteristic p, such that M = M(N).

Proof Because M is regular, there exists a regular group N’ on E over the rational field
such that M = M(N"). For each f' € N, let f be the vector over GF(p) defined by

f(a) = f'(a)(mod p), Va€E. ®

It can be shown that the set A of all standard vectors each of which satisfies (8) for a vector
f' in N forms a group on E over GF(p). In what follows, we prove that M(N’) = M(N).
Let C’ € 2. From M = M(N"), there exists a primitive vector k' € N such that

E(W)=C".

Consider the standard vector h which corresponds to h’. Then E(h) = C'. That implies C' is
dependent in M(N'). Hence, there exists a circuit C of M(N) such that C C C.
On the other hand, let C be a circuit of M(N'). There is a vector f € A such that

E(f)=C.

But this means there exists f' € A such that C C E(f’). If a € E(f')\C, then f'(a) =0
(mod p). However, from Lemma 14.2.2, there exists a standard vector A’ such that E(h’) =
E(f) = C, or in other words C, is dependent in M(N”). Hence, there exists a circuit C’ in
M(N") such that C' C C'.

Combining the two facts above, we have M(N) = M(N'). The lemma is obtained. |

Lemma 12 If a matroid M is regular, then M is representable over every field.

Proof From the definition of a regular matroid, it is natural that M is representable over
the rational field and hence over any field of characteristic zero. Further, from Lemma 11, we
can see that M is representable over GF(p) and hence over any field of characteristic p. From
the classification of fields according to the characteristic, the lemma is obviously obtained. 1

1525
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Let D(M) be the incident matrix of a matroid M = (Z, E) with rows corresponding to
circuits in £ and columns, elements in F, and be called the circuit matriz of M. Dually,
the cocircuit matriz, denoted by D*(M) of M is the incident matrix of circuits in Z* against
elements in E where M* = (2%, E) is the dual matroid of M. In other words, the cocircuit
matrix of M is the circuit matrix of its dual matriod M*, i.e.,

D*(M) = D(M*). (9)

For a binary matroid M, if it is possible to assign negative sign to some of the non-zero
entries in D = D(M) and D* = D*(M) such that

pD*T =0 (10)

over the integer ring, then M is said to be orientable.

Lemma 13 If a matroid M is regular, then M is orientable.

Proof Because M on E is regular, there exists a group of integral vectors A such that
M = M(N). For a circuit C of M, we have a primitive vector f € A such that E(f) = C. In
the row of the circuit matrix D of M corresponding to C, we assign a positive or a negative
sign to the entry according as the corresponding component is +1 or —1. And likewise, orient
the cocircuit matrix D* in agreement with the assignment of signs on the circuit matrix of
the dual matroid M* = M(N*). Because of the orthogonality of the groups of vectors N and
N* =N*+,D and D* with signs defined on the entries satisfy (10). This is the lemma.

For a binary matroid M with a base B given, the incident matrix of fundamental circuits
against elements is called the fundamental matriz of M. And, the cofundamental matriz of M
is defined to be the fundamental circuit of its dual M* for the cobase B corresponding to B.
If a matrix over the rational field has all the determinants of its submatrices being 0, 1 or —1,
then it is said to be totally unimodular.

Lemma 14 If a matroid M is regular, then for any base its fundamental matriz is totally
unimodular.

Proof From the regularity and Lemma 9, we are allowed only to discuss the total uni-
modularity for the fundamental matrix of a regular space with basis consisting of primitive
vectors.

For convenience, let J(S,T) for § C B,T C B,| S |=| T | be the submatrix of the funda-
mental matrix J(B) for base B by the rows corresponding to the elements in S and the columus.
to the elements in T. If det J(S,T) # 0, then it is seen that J(B) can always be transformed
into J(B'), B' = (B\T) U S by the operations: permuting the rows, adding to one row another
row obtained by multiplying a row by —1, and multiplying a row by —1. This implies there is
a nonsingular matrix A with entries 0, 1, and —1 such that

det A det J(S,T) = 1.
Because both det A and det J(S,T) are integers, it is only possible that
det J(S,T)

is 1 or —1. From the arbitrariness of the choices of B and (§,T), the lemma follows. |
A binary matroid is said to be totally unimodular if so is one of its fundamental matrices.
The simplest example of a binary matroid which is not regular is the Fano matroid which
is on a set of seven elements {e;,ez,:--,er} with the circuits as

{ X126, X135, X247, X234, X257, X367, X466 } (11)
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where X;jx ={e: | 1<t <T,t#14,j,and k} for1<i<j<k<T.

Lemma 15 If a matroid is regular, then it does not contain Fano matroid or its dual as
a minor,

Proof Because it can be verified as in the proof of Lemmas 5 and 8 that any minor of a
regular matroid is also regular and that a matroid is regular iff so is its dual then from the
definition of a regular matroid, by the above description of the Fano matroid the lemma is
deduced.

For a binary matroid M, if its fundamental matrix over GF(2) does not have a submatrix

from which the following matrix
0 1
X=|1 1
1 1

or its transpose XT can be obtained by permuting rows and columns, then M is said to be
X-free.

Lemma 16 If a binary matroid M is regular then its fundamental matriz over GF(2) is
X -free.

Proof A direct consequence of Lemma 15, by the non-regularity of Fano matroid and its
dual none of which is X-free.

Lemma 17 For a binary matroid M, the following statements are equivalent:

(i) M is representable over every field;

(ii) M is orientable;

(iil) M is totally unimodular;

(iv) M has no minor which is isomorphic to Fano matroid or its dual;

(v) M is X-free. 1

The proof is left to the reader [6, 10, 11].

Theorem 3 A binary matroid M is regular iff M satisfies one of the statements (i-v) in
Lemma 17.

Proof The necessity is obtained from Lemmas 12-16. It suffices to prove the regularity of
M from the statement (i) for the sufficiency by using Lemma 17. However, this is obvious from
the definition of a regular matroid. |

Of course if M is replaced by its dual M* in (i-v) of Lemma 17, then the theorem assumes
its dual form.

=
QO =t

3. Graphic Matroids

For a graph G = (V, E), let R(G) be the space generated by {e | Ve € E} over the rational
field. Let C and C* be the groups of the integral vectors in R, called the cycles and the cocycles
of G as discussed in [4,§3.1] respectively. Further, let Z(G) = M(C) and

zZH(G) = M(ch)

be the circuit matroid and the cocircuit matroid of G respectively because it can be verified
that the families of subsets of E in Z(G) and Z*(G) are all circuits and cocircuits on G.
Lemma 18 Both Z(G) and Z*(G) are binary.
Proof Because if R(G) is taken to be the space over GF(2), then C and C+ are the cycle
space and the cocycle space as shown in [4], from the definition of binary matroids in Section
2, the lemma naturally follows.

&
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Lemma 19 Let Z*(G) be the dual matroid of the matroid Z(G) for a graph G = (V, E).

Then
Z*(G) = ZX(G).

Proof From the orthogonality of the cycle space and the cocycle space of a graph and the
definition of the dual matroid of a binary matroid in Section 2, the lemma is obtained. I

Lemma 20 Both Z(G) and Z*(G) are regular.

Proof From Lemma 19 and the fact that a matroid is regular iff so is its dual matroid, it
suffices to prove the regularity of Z(G) only. Because Z(G) is binary from Lemma 18, all the
members of subsets in Z(G) can be represented by vectors over GF(2). We may assign to each
edge a direction on G and define the vector f = f(C) for C € Z(G) as

1, if e € Candeis in the clockwise direction of C;
fley=<¢ -1, ife€Cand eis in the anticlockwise direction;
0, otherwise.

Because any cocircuit C* € Z1(G) has the form:
C'=(XY)={(z,y) |Vz e X,y € Y,(z,y) € E}
where Y = V\ X, the vector f* = f(C*) for C* € Z(G) is defined to be

-1, ife=(y,v)eC’anducY,veX;
0, otherwise.

1; ife=(u,v) € C*andue X,veY;
f(e) =

Because for any C' € Z(G) and C* € Z4(G), from the orthogonality we always have

S fe)f(e)=0.

ecE

Such an orientation shows that Z(G) is orientable. From Theorem 3, the lemma is derived. 1

For a matroid M, if there exist corank(M) + 1 circuits (in general, cycles) such that each
element of E appears in exactly two circuits among them, then M is said to be over corank
2-coverable. Dually, if there exist rank(M) + 1 cocircuits (in general, cocycles) such that each
element of E appears in exactly two cocircuits among them, then M is said to be over rank
2-coverable. Of course, from the duality M is over rank 2-coverable iff M* is over corank
2-coverable.

Lemma 21 If M is a graphic matroid, then M* is over corank 2-coverable.

Proof Because M is graphic, there is a graph G such that M & Z(G), the circuit matroid
of G = (V, E). Let C*(v) be the cocircuit (in general, cocycle) which consists of all the edges
incident with » in G. Because each edge has two ends, it appears in exactly two cocircuits
among all C*(v),v € V. Therefore, M* is over corank 2-coverable.

For a binary matroid M = (Z, E), let Cycl(M) be the space of vectors over GF(2) which
is generated by all the vectors corresponding to the subsets in Z. We call Cycl(M) the cycle
space of M.

A family of subsets on E, each of which corresponds to a vector of the space Cycl(M) with
the property that each element of E belongs to exactly two subsets in the family, is said to be
a double covering of M. For a double covering D of M, let Boun(M; D) be the space of vectors
over GF(2), which is generated by all the vectors corresponding to the subsets in D. We call
the space Boun(M; D) a boundary space of M for D.



