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CHAPTER X

TRIGONOMETRIC INTERPOLATION

1. General remarks

In this chapter trigonometric polynomials will be systematically referred to simply
as polynomials. We shall refer to ordinary polynomials, when we have occasion to
speak of them, as power polynomials.

A polynomial n n
T(z)=4a,+ Y (@, coskz + b, sinkz) = 3 c, ek (1-1)

k=1 k=—n
of order n has 2n+ 1 coefficients, so that one would, in principle, expect that 2n+ 1
constraints would be sufficient to determine 7'. A purely cosine polynomial of order
n has n + 1 coefficients; a sine one, n coefficients.

Let us fix 2n + 1 points
P Lo By o o L

on the z-axis, distinct modulo 27. (In what follows we shall speak simply of distinct
points.) If desirable, we can always assume that these points are situated in any fixed
interval of length 2.

(1-2) THEOREM. Given 2n+ 1 distinct points x,, %,,. . ., Z,, and arbitrary numbers
Yo» Y1s -+ » Yan, r€al or complex, there is always a unique polynomaal (1-1) such that
T(x)=y, (k=0,1,...,2n). (1:3)

If we treat (1-3) as a system of linear equations in the c,, the determinant of the
system is

1 e et
iz 2niz a . o
e-inzotzy bt | 1 €T e O gminGtr e b 2an) [ (€876 — o),
u>v
1 eir,_,. . ezui:,,,

and this is different from 0.

The polynomial 7T'(z) just defined is called the (trigonometric) interpolating poly-
nomial corresponding to the points (abscissae) z, and the values (ordinates) y,. The
points z,, Z,, ..., &y, are often called the fundamental, or nodal, points of interpolation.

Let ¢;(z) be the polynomial of order n which takes the value 1 when z=z; and the
value 0 at the remaining points z,. Then

2n
T(x)= .§oy;’t1(1): (1-4)

since the right-hand side is a polynomial of order n taking the value y, for z=z,,
for all k. The polynomials ¢;(z), =0, 1, ..., 2n, are called the fundamental polynomials
corresponding to the fundamental points zy, z,, ..., Z,,.

Clearly
)= Tl 2sin }(z -2 /kr],2sin§(x,—xk). (1-5)
+j +



2 Trigonometric interpolation [x

For the expression on the right is equal to 1 when z=x; and to 0 at the remaining z,;
and it is a polynomial of order =, since the numerator consists of 2n factors each of the
form o ediz 4 getiz,

It is also easy to see that if on
Ax)= k[[02 sin §(z —x,),

then ty(x) = A(z)/{2A" (x;) sin §(z — ;)}. (1-6)

By the number of roots of a polynomial T'(x) we shall mean the sum of the multi-
plicities of its distinct real roots (distinct mod 27, that is). We have now:

(1-7) THEOREM. The number of roots of any T'(x) =% 0 of order n does not exceed 2n.

From (1:1) we see that e~z P(z) = P(z), (1-8)

where z =¢*% and P(z) is a power polynomial of degree 2n in z. If z=¢£ is a root of order
kaF T, thatis; b gy Liriey = .= TN =0, TE LG,

successive differentiation of (1-8) with respect to 2 shows that {=e¥ is a root of order
k for P(z), and conversely. Hence if the number of roots of 7'(z) exceeds 2n, the number
of roots of P(z), multiplicity being taken into account, also exceeds 2n. Thus P(z)=0,
that is, 7'(z) = 0, contrary to the hypothesis.

As a corollary, we obtain that if two polynomials S(z) and T'(z) of order n vanish at
the same 2n points £y, £, ..., £y, of the interval 0 < x < 27, then one of S and T is a multiple
of the other. (If k of the points £ coincide, we mean that S and 7' have roots of multi-
plicity at least k there.) For suppose that S#%0 (otherwise, S=0.7"), and let
C=T(£)/S(§), where £ is distinct from £, &, ..., &, and is such that S(£)+0. The
polynomial 7'(x) — CS(x) of order » vanishes not only at the points £, £,, ..., £,, but also
at §. Hence T—-CS8=0, T=CS8.

In particular, if T' vanishes at the roots of cos (nz +a), then 7'= C cos (nx + ).

(1-9) TurorEM. If a cosine polynomial C(x) of order n vanishes at n+1 points
Eo<éi<...<&, im0z <7, then C(z)=0.

If £,> 0 or £, < m, C(x) vanishes at 2n + 1 points and so is identically zero. For C(z)
is even, and if, for example, £, > 0, C(z) vanishes at +£,, +£,, ..., + &, ,, £, (£, and
—£, are not distinet if £, =). If simultaneously £,=0 and £, ==, then C(2), being
even, must have at least double roots at =0, 7, so that the number of roots of C(z)
is at least 4 + 2(n — 1) =2n + 2, and again C(z)=0.

(1-10) TuroreMm. If a sine polynomial S(x) of order n vanishes at n points
£ <Ey<... <&, interior to (0, m), then S(z)=0.

It is enough to observe that S(x) vanishes at 2n + 2 distinet points 0, + £, ..., + £,

It is sometimes important to interpolate by means of purely cosine or purely sine
polynomials.

(1-11) TuEorEM. Given any n+ 1 distinct points £, &,, ..., &, in 0<z <, and any
numbers 1y, 1y, ..., Iy, there 18 a unique cosine polynomial C(z) of order n such that
C(Ex) =" for all k.

Observe that 74(2) = H’(cos z—cosf;)/ H’(cos £;,—cosf;)
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is a cosine polynomial of order » which is equal to 1 when z=§; and vanishes at the

remaining £, so that %
C(x) =j§o775 75(x)

is a cosine polynomial having the required properties. Its uniqueness is a consequence
of (1-9).
If the points £; are all in the interior of (0, 7), the roots of cos z — cos §; are all simple,

and so 2
d &(x)sin £;
e = 8'(£;) (cos z —cos £;)’
where d(z) =] (cosx —cos §,).
k

The case in which C(z) is of order n — 1 and

n—l).:l. (n—l)___,3_" n~1,=(2n—l)1r
=T, Evd e

is particularly interesting. Here d(x) has the same roots as cosnz, so that

é(z) = C cosnz,
and it is easy to verify that now
cosnz™} (—1)sing;

C(z)= x

n ;pcos§;—cosx

7 (§,=(2j+1)%). (1-12)

(1:13) TueoreM: Given any distinct points &, &,, ..., &, interior to (0,7) and any n
numbers 9,, N, - .- , Ny, there is a unique sine polynomial S(x) of order n such that S(£,) =1,
for all k.

It is enough to set .
S(x) =iEl71;¢Tj(x),

sinz [] (cosz—cos )
k+j

sin §ik[}’ (cos&;—cos§y)’

where oix)=

Clearly o, is a sine polynomial of order » which is equal to 1 when x=£; and vanishes
at the remaining £,.

Return to the general formula (1:4). Given any function f(z) of period 27, the
interpolating polynomial which coincides with f(z) at the points z; (and so also at the
points congruent to z, mod 27) is equal to

2n
,Zof(x;) ty(z). (1-14)
Suppose now that for each n» we have a system

B R (1-15)

of 2n + 1 fundamental points. It is natural to ask for conditions under which the sum
(1-14) will tend to f(x) as n—co. This problem of the representation of functions by
interpolating polynomials has something in common with the problem of the repre-
sentation of functions by their Fourier series. It is natural to expect that the geo-
metric structure of the fundamental sets (1:15) is of great importance here. Little is
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known about the behaviour of the interpolating polynomials for the general system
(1-15), and in what follows we shall be concerned almost exclusively with the case of
equidistant nodal points. By this we mean that

A=t 131 (j=0,1, ..., 2n). (1-16)
Thus the points exp (izf"), j=0, 1, ..., 2n, are equally spaced over the circumference
of the unit circle. This case has been particularly well investigated, and is the most
important in applications. Moreover, the analogy with Fourier series is here par-
ticularly striking.

If no confusion arises, we shall write z; for z{™.

The polynomial coinciding with the periodic function f(z) at the points (1-16) will
be denoted by I,(z, f) or by I[f], or simply by I (x), and will be called the n-th
interpolating polynomial of f.

Consider the Dirichlet kernel
sin(n+3)u

2sinju

D,(u)=3%+ :‘j cos ku =
k=1

It is a polynomial of order n vanishing at the points 27j/(2n +1),5=1, 2, ..., 2n, and
equal to n+} for #=0. Thus the polynomial D,(x—x;)/(n+}), which is equal to 1
when z =z, and to 0 at the remaining points z,, is a fundamental polynomial for the
system (1-16) and, by (1-14),

Lz, f)= Zf(z,)D (22— z,) (1-17)

2n+l

This expression can be written as a Stieltjes integral. Let £, be any real number,
and for every positive integral p let w,(x), —co <z < +00, be any step function which
has jumps 27/p at the points

E=5+2vmp (v=0,+1,+2,..), (1-18)

is constant in the interior of each interval (£,,£,,,) and has regular discontinuities at

the £,. The function w,(z) is determined uniquely, except for an irrelevant additive

constant, by the suffix p and by the position of any point £ ; so no misunderstanding

will occur if we denote the function simply by w,(x). If the set (1-18) contains a point

£, or a point set E, we shall say that the function w,(z) is associated with £, or with E.
The formula (1-17) can now be written

L )= [ 10 Dz ) dop 0 (1-19)

where w,,,, is associated with the points (1-16). If S(z) is & polynomial of order =,
then I,(z, S) =8(z), since both sides are equal at the points (1-16). Thus

S(e)= {7500 Dy —1)dig1 0 (120)

+27
If g(z) is periodic, then fa gdw, is independent of «. In particular, the integral
in (1-19) may be taken over any interval of length 2.
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If f(z) is continuous, the integral in (1-19) certainly exists as & Riemann-Stieltjes
integral. If f is discontinuous at some of the points (1-16), the integral does not exist
in the Riemann-Stieltjes sense. We might here use the more general Lebesgue-
Stieltjes definition, but it is much simpler to treat the integral in (1-19) merely as a
different notation for the sum in (1:17), and we shall always do so. The advantage of
the integral notation is that it brings to light the formal similarity between the nth
interpolating polynomial of f and the nth partial sum

2w
Suwif) = [ 1O Dy (1-21)

of S[f]. If we add a suitable constant to w,, ., (f), it will tend uniformly to ¢ as » tends
to infinity, and this might suggest that the behaviour of I,(z, f) as n— oo should be
similar to that of S, (z; f). We shall see later that within certain limits this is actually
the case, though the parallelism does not go so far as might be expected from the formal
resemblance of the integrals in (1-19) and (1-21).

In this chapter, unless otherwise stated, we shall consider only functions integrable
in the classical Riemann sense and of period 27. In particular, our functions will be
bounded. The most interesting special case, and that in which the most important
problems arise, is that of continuous functions. Usually the extension of results from
continuous to R-integrable functions (if possible at all) does not require essentially
new ideas; but R-integrability is as natural for the theory of interpolation as L-integra-
bility is for the theory of Fourier series. That L-integrability is not of much use for
interpolation is clear from the fact that the I (x, f) are defined by the values of f at
a denumerable set of points. By modifying f there, we can change the behaviour
of the [ f], while S[ f] remains unchanged.

The polynomial I, (z, f) conjugate to I,(z, f) is obtained from (1-17) by replacing
each D, (z —z,) by the conjugate Dirichlet kernel D, (z —z;), where

cosjz—cos(n+4)z
2sin }z ’

2n
Thus L@ N=; [ 10 Dua—1)dir 0 (1-22)

D, (x)= é}lsin kx=

In particular, for any polynomial S(z) of order n,

8(z)= 5 J:'S(t) D, (z —t)dwyy,4(b). (1-23)

Trigonometric interpolation is analogous to interpolation by means of power
polynomials. Given any = + 1 distinct points &, {, ..., {, of the complex plane, and
any numbers 7, 9;, ..., 7,, there is always a uniquely determined (interpolating)
polynomial P({)=c,+¢,{+ ... +¢,{" of degree n satisfying

PG)=m (k=0,1,...,n). (1-24)
The uniqueness follows from the fact that the difference of two such polynomials
would be a polynomial of degree n having at least n+ 1 zeros, and so would vanish

identioally. Ifweset )= €L ~8) .. (€~ c,),}

10 =)' (&) (L), L
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then 1,({) is a polynomial of degree n equal to 1 at {; and vanishing at the remaining {;.
Thus, if F({) is any function such that F({;) =1, for all j, we get the classical Lagrange
interpolating formula

o o GegemisWED
PO= 2 n4®=Z ey e-t)
Z (g’)w(g)(g &)

Assume now that all the points {; are real and situated in the interval —1<{<1,
and consider the (standard) mapping r il (1-26)
of the interval —1 < ¢ < 1 on to the interval 0 <z <. It transforms any function F({),
defined in —1<{<1, into F(cosz)=f(z), say, and the points §,, &, ..., {, into points
Zg, Xy, .-+, &,. The power polynomial P, () coinciding with F({) at the points £, becomes
P, (cos z), a purely cosine polynomial coinciding with f(z) at the points z,, z;, ..., 2,,.

Conversely, we suppose that f(z) is any function defined for 0<z <, that
0<zy<z,<...<x, <7, and that C,(x) is the cosine polynomial of order n coinciding
with f at the points @, z,, ..., z,. We observe that cos kx is a power polynomial of
degree k in cos . (This is obvious for k=0, 1, and for general k it follows by induction
from the formula cos kz + cos (k — 2) z =2 cosz cos (k— 1) z.) Thus the transformation
(1:26), which carries the function f(z) into an F({) defined in —1<{<1, also carries
C,(z) into a power polynomial F,({) coinciding with F at the points {;=cosz;.

The problem of interpolating by means of power polynomials P,({) on the interval

—1<¢<1is thus equivalent to that of interpolating by means of cosine polynomials
on 0 <z <. The case of the so-called T'chebyshev abscissae

os(2n— )@
2n

is equivalent to cosine interpolation with equidistant fundamental points 7/2n,
3n/2n, ..., (2n—1)7[2n.

L " Al 3 L
g((,n l)=008§1;, (n l)=cos§'—l, o §$."_1”=0

2. Interpolating polynomials as Fourier series
Write .
I(x, f)=13a" + 3 (a™ cos vz + b sin vz)
=1
+n
- 2 csn) ewvr,

If we replace D, () in (1-19) by } + cos % + ... + cosnu and compare the terms on both
sides, we get

am=1 j': "f(0) c0B M Aty (), BP=1 j: " £(t)sin vtdw, 1 (t) @1)
forv=0,1, 2, ..., n. Similarly we have
l £ 4

o= Ei—rﬂ S(t) e dw,, 14(t) (2-2)

for | v| <n. The numbers a{, b will be called the Fourier-Lagrange coefficients of f
(corresponding to the fundamental points (1-16)). The ¢ are the complex Fourier-
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Lagrange coefficients of f. Where no ambiguity arises we shall write a,, b,, ¢, for
a™, b, ¢™_ For a fixed v, the integral defining a{™ is an approximate Riemann sum

for the integral 1 [er
;j f(t)cosvtdt,
0

and similarly for (", ¢{™. Thus as n - oo the v-th Fourier-Lagrange coefficient of f tends
to the v-th Fourier coefficient of f.

We recall a definition from Chapter I, § 3. Let ¢,(x), §5(z), ... be defined in an interval
(a,b), and let w(x) be a non-decreasing function in (a,b). We say that the system of
functions ¢, is orthogonal over (a, b) with respect to the weight dw if

0 for j+k,

b
. oy 3
L¢,(x>¢k(x) w(z) {/\,‘>0 sy

Given any function f(x) defined in (a, b), we call the numbers

1 [
o =5 | H0) B duio)
jJa
the Fourier coefficients of f, and the series

C1 P+ Cas + ...

the Fourier series of f, all with respect to the system {¢,} and the weight dw. The system
is called complete if the vanishing of all the ¢, implies that f vanishes almost everywhere
with respect to dw; that is, that the variation of w(x) over the set of points at which
[ does not vanish is 0.

Return to (2-1). Taking for f(z) one of the functions

3, cosz, sinz, ..., cosmz, sinnz, (2-3)

we immediately deduce that this system is orthogonal over (0, 2m) (or any interval of
length 2mm) withrespect totheweight dw,, ,,. The numbers A here are equal to o, 7,7, ..., 7.
The formulae (2-1) imply that I, (x, f) is the Fourier series of f with respect to the system
(2-3) and the weight dw,,, ..

Similarly, we show that the system e®* »v=0, +1, ..., + =, is orthogonal over
(0, 2m) with respect to dw,, ,,, and /1, (z, f) is the Fourier series of f with respect to this
system.

If for a given fthe numbers ay, a,, b,, ..., a,, b, are all 0, then I, (z, f) = 0. This means
that f=0 at the discontinuities of w,, ., (since [, (z, f) =f there), that is, that the total
variation of w,, ., over the set where f does not vanish is 0. We may therefore say that
the system (2-3) is complete with respect to dw,,, , ;.

The orthogonality of the system (2-3) with respect to dw,,,, can also be proved
directly; we have only to observe that

2m 2 (*27
J. cos kxdwy(x) + iJ. sin kxdwy(z) =J ez dwy(x), (2-4)
0 0 0

and that the last integral is 0 if k is any integer not divisible by N (see Chapter 11,
(1-3)). Under this hypothesis both integrals on the left must vanish, and from this we
easily infer that the system (2-3) is orthogonal over any interval of length 2m with respect
to dw,,, where m is any integer (odd or even) greater than 2n.
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1t follows from (2-4) that if 7'(z) is any polynomial of order less than N, then
(2m)2 : Tdwy
is equal to the constant term of 7'(z). Thus
f :' T(z) dwy(x) = j :' T(z)dz (2'5)

for any polynomial T of order strictly less than N. In particular,

(2:6) TueorEM. If S(z)=Zy, e"* and T'(x)=Zy, e** are polynomials of order n < }N,
we have the Parseval formulae

2m n
3. S@T@doy= £ 7.7, @7)
1 [2n S e +n 5 2.8
57—'.]-0 | S(x) | N—V_Z_"IYJ- (2-8)

The case N =2n + 1 is particularly important.

If a system of functions {¢,(z)} is orthogonal in (a,b) with respect to the weight
dw(z), and if S is a linear combination of the functions ¢,, ¢,, ..., ¢, with arbitrary
constant coefficients, then the quadratic approximation

[[170- sy Faote)

of f by S, is a minimum for fixed k if S, is the kth partial sum of the Fourier series
of f with respect to the system {¢,} and weight dw(z) (Chapter I, § 7). This and the
fact that I, (z, f) is a Fourier series give significance to the kth partial sum of I, (z, f),

k
Lz, f)=1a" + X (ai™ cos vz + bi™ cos vz)
v=1

1 (2~
—2 [ rO DDt =01, m, 29)
and we have the following theorem:

(2:10) TrEOREM. The polynomial I, ,[f] minimizes the integral
J: [ f(@) = 8(2)|* dwgp,y(x)

among polynomials S of order k.

Hence I, ,[f]is the unique solution of the following problem: among all polynomsals
S(z) of order k < n find the one which would approximate best—in. the sense of least squares
—to the function f at the points z,, x,, ..., Z,,. For k <n we cannot in general expect that
the minimizing S would coincide with f at those points.

3. The case of an even number of fundamental points

In principle, any 2n+ 1 conditions will suffice to determine a polynomial 7' (z) of
order #. In the previous section we assigned the value of 7" at 2n+ 1 pre-assigned
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points. Now we shall choose a set of 2n equidistant points depending on 7', more
precisely on the phase of the highest term of T'; and we show that 7' is uniquely
determined by the conditions of having given values at these 2n points.

For write T in the form

n—-1
T(x)=3a,+ X (a,cosvz+ b, sinvz)+ p cos(nx+ a) (3-1)
v=1
(p not necessarily positive), and consider the function w,, associated with the roots of
sin (nz +a). Since the product of any two of the functions
4, cosz, sinz, ..., cos(rn—1)z, sin(n—1)z, cos(nzx+a) (3-2)

is a polynomial of order less than 2n, it follows from (2-5) and the ordinary ortho-
gonality of the system of functions (3-2) that this system is orthogonal with respect to
dw,, over any interval of length 27. (This holds for any w,,.) Thus the coefficients
a,, b,, p of T can be determined in the usual Fourier fashion. However, while

2w
[, ardus =1
om 2n
and f cos?vtdw,, = | sin?vidw,,=m
0 0
forv=1, 2, ..., n—1 (by (2-5)), we have
” 27
r cos? (nt + &) dw,,(t) =f 1.dw,,(t) = 2m,
0 0
by virtue of the hypothesis on w,,. Thus
2m -1
T(x)= ;lrJ. T(t) {i +”2 cos v(t —x) -+ } cos (nt + ) cos (nx + a) } dw,, ().
0 v=1

To the last term in curly brackets we may add } sin (n¢ +a) sin (nz + ), which is 0 at
the discontinuities of w,,. The expression in brackets then becomes D*(t —z), where

sin nu
2tan ju

is the modified Dirichlet kernel (Chapter II, §5), and we obtain the following result:

n—1
DY(u)=%4+ 3 cosvu+}cosnu=
v=]

(3-3) TuEorREM. For any polynomial (3-1) we have

27
7@, [0 D3t —2)don0) (34)

provided w,, 1s associated with the roots of sin (nt + ).
The right-hand side here depends solely on the values of 7' at these roots.
Let now & be any real number. Any polynomial S(z) of order » can be written

S(z)=T(z)+ osin (nx +a),
where T is of the form (3-1). Thus in (3-4) we may replace T'(x) by S(z) — o sin (nz + @)
and 7'(t) by S(¢), since sin (n¢ + @) vanishes at the discontinuities of w,,(t). This gives

8(z) =0 sin (nz +a) +1—lr f :' S(t) DX(t — z) dwgy (£). (3-5)
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In particular, let ¢,,(¢) and ,,(t) be the functions w,, associated respectively with
the zeros of cosnt and sinnt. Let u,, u,, ..., %y, and v, v,, ..., vy, be the discon-
tinuities of ¢,, and ,,. We may suppose that

= = — = .--’2 -
Then, u=02k—=1)7[2n, v=knn (k=1,2, n)

(3-6) TuEOREM. For every polynomial

S(z)=14a,+ f_] (@, cos vz + b, sin vx),
v=1
we have S(x)=a, cosm:+7—l'J1'S(t) D}t —z)dp,,(), (37)
0

S(@)=bsinnz+ . f :' S(t) Dt — 2) difrg (). (38)

These formulae are particularly useful for obtaining expressions for the polynomials
8, 8, §’, which, unlike S, contain 2n coefficients only. For example, differentiating
(3-7), where the integral is actually a finite sum, we get
ncosn(x—t) sinn(z—t) .
Stanj(z—1) ssm?j—p) W (39

8'(x) = —na, sin nz+$j:"S(t)‘

In this put =0 and recall that ¢,, is associated with the zeros of cosnt; then we

obtain 1 2 (—1)k+1
8 (0)=;k§ls(“k)m)—,, (3-10)
and applying the result to the polynomial S(6 + z) we have
oy =10 _(k—H)m ’
§0)=3 TS0+u) 5t (u,, -t ) . (311)

This formula for the derivative of a trigonometric polynomial has interesting

applications. If we write gt 7S T O

2n
it gives | 8°(0) | < X ap | S(O+u)|. (3-12)
k=1
Now &, +ay+ ... + &y, =7, a8 we may easily verify by taking S(z)=sinnx in (3-10).
Hence, if | S(x) | < M for all z, we have
| 8'(0) | < M(ay+ay+ ... +ay,)=Mn.

More precisely, we have |S8'(6)|<Mn, unless S(6+u,) is alternately + M for
k=1,2, ..., 2n, that is, unless S(6+2) coincides either with M sinnx or — M sinnx
at the points ;. To fix our ideas, consider the first case and let

A(z)=S(6 + x) — M sin nz.

Then A(x) has roots u, u,, ..., u,,; but since |S|< M, both S(6+2) and M sinnx
attain their maxima and minima simultaneously at the points %, and the roots must
be at least double. It follows that A(z) has at least 4n > 2n + 1 roots. Hence

S(0+z)=Msinnz, S(z)=Msinn(xz—0),
and we get the following theorem:
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(3-13) THEOREM OF S. BERNSTEIN. If a polynomial S(x) of order m satisfies
| S(z) | < M for all z, then | S'(x) | <nM, with equality if and only if S is of the form
M cos (nx + ).

Let now x(%) be non-decreasing, non-negative and convex in » > 0. Dividing (3-12)
by n and applying Jensen’s inequality (Chapter I, (10-1)) we get

x(n 1] 8°(0) |) < x(nZoy | S(6+uy) |) Sn o x(| SO +uy) |), (3-14)

and integrating over 0 < 6 < 277 we have

F'X(n—l | 8°(6) ) d6 < n—lzakfz'xq S0 +u,)|)do
0 0

2m
=n—12akf0 x(] 8(6) |)dé,

2n 2
that is fo X(n1| 8(6) |)d6 < fo X(| 8(0) |) 6. (315)

Suppose now that y is strictly increasing and that we have equality in (3-15). The
two members here are the integrals of the extreme terms in (3-14), so that these terms
must therefore be equal for all 6. Since y is strictly increasing, this is only possible if
we have equality for all & in (3-12). The latter condition implies that for every 6 the
numbers S(6 + w,) are of alternating sign. This in turn implies that the distance between
two consecutive zeros of S never exceeds /n. If S 0, none of these distances can be
less than 71/n, for otherwise S would have more than 2n zeros. Thus either S=0 or
8§ has 2n equidistant zeros. In either case (see p. 2) S= M cos (nx + £). Hence

(3:'16) THEOREM. For every function x(u) non-negative, non-decreasing and convex
nu>0, we have

2n 2n
[ x5 @ nao< [ x s0 has. @317)
If x s strictly increasing, equality occurs if and only if S = M cos (nx + £). In particular,
2 1/p [ *2n 1/p
(f |S’|Pd0) Sn(f |S|Pd0) for p>1. (3-18)
0 0

When p— o, the last inequality reduces to max | S’ | <nmax|S|.
If | S| < M, then not only | 8" | <nM but also | 8’| <nM. This is a corollary of the
following result:

(3-19) TueoreMm. If a polynomial S(x) of order n satisfies | S | < M, then
{S'2(x) + 8%(x)}t <nM, (3-20)
the sign of equality holding if and only if S = M cos (nx + £).
Since the integral in (3-7) is a linear combination of the 2n expressions D¥(x — Uy),
the conjugate polynomial S(z) is given by
. 1 [
S(x)=a, sm'na:+7—TJ' S(t) D¥(x —t) dg,(t), (3-21)
0

n—1
where D(u)= 3 sinku + }sinnu=(1—cosnu)} cot ju
k=1

is the modified conjugate kernel of Dirichlet (Chapter II, (5-2)).



