Linear Algebra and Geometry
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VECTORS IN THE PLANE AND IN SPACE

In the ordinary plane (or in ordinary space) we take a fixed
point O ,that we call the origin. We consider arrows in the plane.
An arrow can be characterized by its initial point and its endpoint.

&

The word arrow in therefore used as synonym for “ordered pair of
points” ,the first point of a pair being the initial point,the second
the endpoint of the arrow. An arrow with O as initial point will be
called a vector®.

A special vector is that with O as initial as well as endpoint; it
is special since it cannot be drawn as an ordinary arrow. It is called
the zero vector and designated by O.

There is a one-to-one relationship between points of the plane
and vectors;indeed , to each point there corresponds one vector with
that point as endpoint, and conversely,to any vector there belongs

an endpoint.

To any arrow 55( cf. Fig. 1. 1) there corresponds exactly one

vector (the arrow with O as initial point) which can be obtained
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from BC by displacing it parallel to itself so that O becomes the ini-
tial point. The vector 04 so obtained may thus be represented by
the arrow BC. The vector OA has many such representatives, of
course. Sometimes we shall say “the vector BC” and mean “the

—”!
vector represented by BC”.
The set of all arrows in the plane (in space) with initial point O

is called a 2-dimensional vector space (a 3-dimensional vector space ).

Furthermore the following algebraic conventions will be observed ;

@ Another (equivalent) definition which, however, is slightly less realistic to the beginner,
is:a vector is a complete set (i.e. a set that cannot be extended) of arrow,each of which can be

obtained from any other one by translation (a parallel displacement).



Fig. 1. 1
. — —
A,. Addition. To any pair of vectors @ = OA ,b = OB there corresponds a vector
== . . = . .
¢ = 0C in the following way :the arrow BC must be a representative of @, or equiva-

lently, the arrow AC must be a representative of b ,or;C is the fourth vertex of a par-
allelogram with sides OA and OB (cf. Fig. 1. 2. The last formulation, known as the
parallelogram-construction, is not unambiguous if O, A and B are collinear). This

vector ¢ is called the sum of @ and b,and is denoted by a +b.

Fig. 1.2

A,. Multiplication by a real number A.To any pair consisting of a vector @ = 04

and a real number A there corresponds a vector d =a)>,called the product of A and

a ,denoted by Aa,in the following way:0,A and D lie on a line and

length of OD = IA | « length of OA

whilst A and D will be on the same or on opposite sides of O depending on whether
A is positive or negative. | A | means the absolute value of A ,i. e. the non-negative
on of the number A and — A ;for example |51 =5,1 =71 =7,101 =0(cf. Fig. 1. 1
with A =2). The concept of multiplication considered here is the geometrical multi-
plication known from plane geometry.

Combining addition and multiplication we obtain expressions in vectors and
numbers like in ordinary algebra.

These expressions satisfy a number of identities known from ordinary algebra.

E. g. whatever the vectors @ and b and the number A may be, the vector A (a +b)
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will always be equal to the vector Aa + Ab. This will be clear from the geometrical
multiplication of the parallelogram on @ and b by the factor A.

We mention some identities which are not so very important when considered as
theorems (they are almost trivial ) ,but which will be chosen as starting point ( axi-
oms) in the following chapters. From the moment on theorems will no longer be de-
duced from any knowledge of plane or solid geometry , but from the axioms only. Nev-
ertheless ordinary geometry will play an important part,simply since many theorems
originate in it. Also many theorems and their proofs will be much better understood
and menorized if interpreted in terms of ordinary geometry.

Important rules, true for arbitrary choice of vectors @,b,c¢ and numbers A ,u,

are the following:

Ay (a+b) +c=a+(b+c) associative law
Ay a+b=b+a commutative law
A; la=a

As A(pa) =(Iu)a

A, (A+p)a=Xra+pa
Ay, A(a+b) =Xa+\b
Problem(1.1). Take vectors @,b ¢ in space,and numbers A ,u. Construet geo-

} distributive law

metrically the above expressions,and check that the relations hold.



SUBSET ,PRODUCT SET,RELATION AND
MAPPING
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In this chapter we introduce some general notions and symbols
that will be used later on.

If A is a set of elements,and a is one of them,we shall write
acA. If any element of A is also an element of the set B, then A
will be called a subset of B,denoted by A CB,or,which means the
same ,B D A. If moreover A is different from B, the A is called a
proper subset of B. The set of all elements belonging to the set A as
well as to B, is called the intersection of A and B,denoted by AN
B. Fig. 2. 1 shows point sets A and B and their intersection. Note,
that AN B is a subset of A; (ANB) CA, and of B.

The set of all elements belonging to A or to B or the both is
called the union of A and B,denoted by A UB.

The set of all pairs (a,b) with aeA and b € B, is called the
product set of A and B ,denoted by A x B. Hence A x A is the set of
all ordered pairs of elements of A. Also any pair of the form (a,a)
belongs to it;but if a#a’ the pair (a,a’) is to be distinguished
from (a',a). A xA xA is the set of all triples of elements of A.

A subset R of A x B is called a relation between the elements
of A and those of B. If both A and B are the sets of real numbers,
then the set of pairs (a,b) with aeA,b e B such that a <b, is a
relation , viz, the relation “less than”. In Fig. 2. 2 the relation a <b
has been shaded. Similarly we have the relations a =2b and o’ +
b> =1 and b<sin a. We will say that the relation R between a and
b holds if (a,b) eR.

The relation consisting of the set of all pairs (a,a) in A xA is
called the identity. A relation R C A x A is called symmetric if
(a,b) € R implies that (b,a) R, for every a,b e A. The relation
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is called transitive if from (a,b) e R and (b,c) e R it follows that(a,c) € R, for

every a,b,c e A. A relation containing the identity is called reflexive.

b
A\

Fig.2.1 Fig.2.2

<

A reflexive , symmetric , transitive relation is called an equivalence. We will usu-
ally denote equivalence between a and b by a ~ b,and we say: “a is equivalent to
b”. From the definition it follows that for an equivalence we have:a ~ a(reflexive) ;

If a~b,then b ~a(symmetric) ;

If a~band b ~c then a ~c¢( transitive).

The relation “similarity” between plane figures is an instance of an equiva-
lence. The identity is also an equivalence. The relation “less than” for real number
is transitive, but it is not an equivalence.

If an equivalence R in A x A is given, the elements of A can be divided into
classes, such that two elements belong to the same class if and only if they are equiv-
alent. These equivalence classes can be considered as elements of a new set,denoted
by A/R, which is called the quotient of A by the equivalence R. An element of a
class will sometimes be called a representative of that class.

For a geometrical example,consider the set A of all points in a vertical plane.
Two points @ and b will be called equivalent,a ~b or (a,b) e R,if they are at the
same height. It can easily be seen that this relation is an equivalence. The equiva-
lence classes are the horizontal lines.

As another application of the notion of equivalence we mention the construction
of the retional number from the integers. Let A be the set of pairs of integers (p,q)
with ¢#0. Two elements (p,q) and (r,s) will be equivalent if ps — qv =0. Again it
is easy to see that this relation also is an equivalence. The equivalence classes are
the rational numbers. The class of which (p,q) is a representative, i. e. the class to
which it belongs,is denoted by p/q,and also by r/s if ps —rqg =0.

If in a subset RCA x B any element a € A occurs exactly once as leading ele-
ment in a pair,then the relation is called a mapping of A into B. The element b € B

occurring with @ € A in a pair,is called the image of a and may be denoted by b =



fCa) ,or ,still shorter,by fa. The mapping is then denoted by f:A—B. We shall also
write fra—b when b=f(a).

The mapping f will be called a function if B is a set of numbers, or more gener-
ally a sel of elements of a field F(for definition of a field cf. p. 68).

By the image of a subset V of A under f is meant the set of all images fa of ele-
ments a € V. It is denoted by fV. Briefly ,fA is called the image of the mapping f.

In Fig.2.3,A is a set of 6 vertical lines,B a set of 8 horizontal lines. Any ele-
ment of the product space A x B will be a pair consisting of a vertical and a horizon-
tal line, and can be represented by the point of intersection. A relation is given by
marking a number of such points. The relation given in the figure is a mapping of A

into B. This is similar to the ordinary graph of a function.

Fig.2.3

The relation is called a mapping of A onto B if the image coincides with B. The
set of all @ € A having b as image is designated by ™' (b) and is called a level set of
the mapping f. The level set of the mapping which associates to points on the earth
the temperature , the atmospherical pressure or the altitude at hose points,are called
isotherms , isobars and isohypses respectively. Sometimes one of the points of the im-
age space plays a special part,and is denoted by 0(zero). In that case the level set
£7'(0) is called the kernel of the mapping.

If c=B and f(a) =c for all a € A then f is called the constant function c. For
example , the function zero.

If in the relation RCA x B any element a € A occurs exactly once as leading el-
ement in a pair, and any element b € B at most ( exactly) once as second element,
then the relation is called a one-to-one mapping into( onto).

The relations RCA x B and SCB x C determine a relation SR CA x C called
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the composite relation , consisting of all pairs (a,c) € A x C for which there exists
ab e B such that (a,b) e R and (b,c) €S. We shall use this only in the case that
the relations are mappings,say f:A—B and g:B—C. The composite relation is then
called the product mapping. The product mapping associates to any element a € A the
element gfa =g(f(a)) e C. It is denoted by gf:A—C.

If the one-to-one mappings f:A—B and g:B—4A are such that the product map-
ping fg :A—A is the identity,then g is called the inverse of f. In that case fg:B—B
is the identity in B, and consequently f is also the inverse of g. The inverse of f is
denoted by ' : B—A.

As an example we mention ;the product of the mappings (in this case functions
of real variables) x—x + 3 ,x—a”,x—>sin x is the composite function x—sin(x +

3)%



THE n-DIMENSIONAL VECTOR SPACE V*

We shall now present a precise formulation of our starting
point by giving a definition of vector space. This definition will be
such that the geometrical vector spaces of chapter 1 can be consid-
ered as (important) instances. The definition will not, however, be
based on any geometrical experience of the reader. Also in proving
theorems we shall only use the definition and properties already es-
tablished. Hence , all properties that the vector space will eventually
have, it will have by virtue of our definitions only.

In the definition we shall make use of scalars. The reader may
think of these as real numbers, or also as complex numbers ; more
generaﬂy,scalars will be elements of an arbitrary field F' of charac-
teristic unequal to 2, unless in particular cases we explicitly state
the contrary®. (A field is said to have characteristic unequal to 2 if
any non-zero element differs from its opposite ). The field of real
numbers will be denoted by( F = ) R, the complex number field by
(F=)C.

Definition ; A vector space (or linear space) over the field F

¢ 193deq)

is a get V of elements a,b, -, called vectors, having the following
properties A, , -+, As.

A,. There is a mapping of V x V into V which is called addi-
tion of vectors. The image of the pair (a,b) e V x V is called the
sum of @ and b ,and it is denoted by a +b.

A,. There is a mapping of F X V into V which is called multi-
plication of vectors by scalars. The image of the pair (A,a) e F x
V is called the product, and is denoted by Aa.

(@ A further generalization to arbitrary characteristic and non-commutative fields is possible,

but requires too many precautions for our purposes.
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For arbitrary @ ,b,ceV and A ,u, € F:

Ay (a+b) +c=a+(b+c) associative law
A, a+b=b+a commutative law
A; la=a
Ay A(pa) =(Au)a
A, (A+p)a=A +pa vx il o

} distributive law
Ay A(a+b) =ra+Ab

From properties Ay, -+, A it follows that to a certain extent the manipulations
with scalars and vectors are the same as in ordinary algebra. For example, A; says
that no ambiguity will arise if in a sum of three or more vectors the parentheses are
omitted. A, implies that altering the order in a sum of vectors has no influence on the
result. For example @ + (b +¢) =a+ (b+c) =(a+c) +b=(c+a) +b=c+
(a +b) ,which without any harm may be written as @ +b +¢ or ¢ +a +b.

Problem(3.1). Using A5, -+, Ag only, prove

AM(p+v)(e+b) | +(Aw)a+v(Aa) =A(u+v)(a+b +c)
Au,veFsab,ceV.

A set of generators of V will be any set of vectors @, ,++-,a,, in V such that for

any vector a € V there exist scalars A,,-*+,A,, € F satisfying
a=\a +--+A,a,
In this case we shall say that the vectors a, ,-+- a, generate or span the space V.

If none of the proper subsets of the set a,,---,a, is also a set of generators of
V,then the set @, ,---,a, is called a basic of V.

If a finite set of generators which is not a basis,is given,then by the definition
it should be possible to omit at least one of the vectors of the set and still have a set
of generators. Repeating this,one finds a basis after a finite number of steps.

The properties A, ,--+,A; do not imply that there exists a finite set of genera-
tors. Consider e. g. the set of all polynomials in one variable with real coefficients , or
the set of all continuous functions on an interval.

Since we wish to restrict ourselves in this book to a finite set of generators,we
add :

Ay. V has a finite basis.

The smallest number occurring as the number of elements in a basis is called
the dimension of V. If, however, V consists of exactly one vector, we shall say that the
dimension is zero. A vector space of dimension n will be denoted by V".

The vectors in the ordinary plane with a fixed point O, as introduced in chapter



1 ,form a vector space over the real numbers. Since these vectors are not all multiples
of one of them,the dimension is at least two. In Fig. 3.1 we see that the dimension is
exactly two:a, and a, are vectors different from zero and situated on two intersecting
lines through O. It is easy to find for any vector b a parallelogram having b as diago-
nal and two sides along the given lines. Then there are real numbers A, and A, such
that

b=\a, +\a,

b=2a,+3a,

Fig. 3. 1

Problem(3.2). The vectors in ordinary space with fixed point O form a vector
space of dimension three. Prove this by means of solid geometry.

Problem(3.3). In Fig. 3. 1 the vectors on the line on which a, lies form a vec-
tor space of dimension one.

Remark ; If in a problem like (3.3) just an assertion is given ,then this assertion
is to be proved.

The zero vector. For any two vectors @ =A@, + -+ +A,a, and b =@, + - +
u,b, in the space V with basis a,,---,a, we have

Oxa=0xband a+0xb=a
as the reader can readily verify from the axioms. The vector 0 x @ =0 x b is called
the zero vector ,denoted by O. Clearly and a e V satisfies
a +0 =a,and in addition AO = O for any scalar A
In view of the axioms vector O on its own is a vector space of dimension zero.

The difference vector. By the vector —a we will mean ( —1)a. The vector x sat-
isfying @ +x =c¢ for given a,c € V is called the difference of ¢ and a,and is denoted
bye¢-a.Froma+( -a)=1+a+(-1) -a=0-a=0,it follows that a +c¢ +
(-a)=a+(-a)+c=0 +c=c,hence ¢ + ( —a) satisfies the equation for x,
i. e. there exists such an x,and we have ¢ —a@ =¢ + ( —a) ;it is the vector to be

added to @ in order to obtain ¢. In Fig. 1.2 it is vector b.

SEREE LA
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Problems. Using the definitions of vector space,subspace, basis, etc. , prove the
following assertions, and draw figures illustration the low-dimensional cases. V will
always be a vector space.

Problem(3.4). If the pair a,b € V forms a basis of V,then so does the follow-
ing pair of vectors (A #0)

a,-b;\,b;a+b,b
Problem(3.5).If a,,---,a, form a basis of V, then so do
a a, +a,,a,,a,,.a,

Problem(3. 6). If a,, -+, a, are vectors in V then the set B of all vectors
A@a, + -+ + A,a, with arbitrary A, ,--,A, € F is also a vector space. It is called the
(sub) space generated by a, ,---,a,. The set of all vectors Aa with fixed @ € V and
variable A € F is a one-dimensional space and is denoted by Fa. If U and W are sub-
sets of V, then the set of all b + ¢ with b € U and ¢ € W is denoted by U + W (cf.
Fig.3.2). Hence the subspace generated by a, ,---,a, can be represented by Fa, +
Fa, + --- + Fa,. Similarly AU may be defined.

U

Fig.3.2

Problem(3.7).If W is a set in the two-dimensional geometrical vector space of
chapter 1 and a is a point (vector) , prove that @ + W is congruent to W.

Problem(3.8).If U and W and non-parallel line segments in a plane, prove
that U + W is a parallelogram together with its interior.

Problem(3.9). If U is the interior of a triangle prove that %( U+U) =U.

11



THE PARAMETRIC REPRESENTATION
OF A LINE

$ 19)deyn

Fig. 4.1 shows a so-called number axis. In connection with it
we consider two sets

a) the set of points on the line;

b) the set of real numbers.

The figure suggests a one-to-one mapping between the two

sets , making possible the designation of points by numbers.
-1 0 1 2 3

Fig. 4. 1

Similarly in the geometrical plane with fixed point O of chap-
ter 1 we may consider two sets:

a)the set A of points in the plane;

b)the set V of vectors.

There is again a one-to-one mapping of either of them onto the
other set. Fig. 4. 2 shows the two sets apart,and the mapping k is
indicated by the arrow £.

In A our interest will concentrate on points, lines and other
configurations ,and later on motions. In V our attention will be di-
rected to the vector algebra.

We may speak of A in terms of V. For example B is the point
represented by vector b under the mapping k. It will simply be
called “the point b” . For the time being we shall work with a single
fixed mapping A— V; later on we shall consider various mappings
A—V and we shall make a clearer distinction between A and V.

After this introduction we give the following preliminary defi-
nition of the n-dimensional affine space A"; It is a set whose ele-
ments are called points, having a one-to-one mapping

k:A"—V"

12
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onto the n-dimensional vector space V".

Fig. 4.2

In the following we shall alternately consider A" and V" ;which of the two is un-
der consideration can be seen from the terminology ; points and lines belong to A",
vectors and vector subspaces belong to V". Moreover, vector spaces and vectors will
be distinguished by Roman type.

Definition ; The line through the points ( represented by the vectors) @ and b is
the point set(cf. Fig.4.3)

a+u(b-a) ek (4.1)
or Aa+ub A +pu=1;A,ueklF
This definition of course refers to the affine space A;(4.1) is called the parametric
representation of the line. b —a is called the vector from point a to point b. For y. =0
1

or 1 respectively we obtain the points @ and b again. For y = 5 we obtain the point
z= ;—(a +b) ,the middle or centroid of a and b.
0 b-a u(b-a)
a-y(b-a)

Fig.4.3

If real numbers and being used (F =R) then the definition just gives the ordi-
nary line through a and b. The points with 0 <y <1 lie between a and b on the line
through @ and b. This can be seen from the figure,but it cannot be seen independ-
ently of that,since “between” is a yet undefined term. A suitable definition is there-

fore: A point (4.1) on the line through a and b will be said to lie between a and b

13



if0<u<l.

Suppose for general F that “the line throught the different points ¢’ and b"”
contains the points @ and b( #a). We shall now prove that the line coincide with
“the line through a and 6”.

This is expressed by

Theorem[ 4. 1] : There is exactly one line containing two given different points.

Proof ; Since a and b are on the line through a' and b’ there exist scalars v’ and
n'#v' € F such that

a=a +v'(b"'-a’'),b=a"+n'(b'-a’)
The line through @' and &' consists of the points
a' +u'(b" —a’) ,u' variable in F
The line through a and b consists of the points
a+u(b-a)=a + v +u(n-v'){(b'-a"),ueF
These two sets are identical ; Take
p=v +u(n' =v')u=@ -v') (g -v)""

If a#0 and b are vectors such that b = Aa,then the scalar A is called the ratio
of b and a. If also b =pa then A\a —pa = (A —p)a=0.1f A —p7#0 then (A -
) ' (A —u)a=a=0,contrary to the assumption. Hence A =y and the ratio

b
e (4.2)

is uniquely determined.

N. B. For arbitrary vectors @ and b ,the left-hand side of (4.2) usually has no
meaning.

Two lines are said to be parallel if there exist points @ and b( #%a) on one of
them , points ¢ and d( #%¢) on the other,and a scalar A such that
d-c
b-a
A is called the ratio of the line segments “cd” and “ab”.

d-c=A(b-a), A=

(4.3)

Problem (4. 1). If arbitrary points a’ and b’ #a' are chosen on one of two par-
allel lines and points ¢’ and d'( #¢’) on the other one,then there exists a scalar A’
such that (d' -¢') =A"(b' -a’).

Problem(4.2). Given points a and b in the ordinary plane,determine a point ¢
on ab such that the ratio of the line segments ab and ac equals (i) —1;(ii) +4;
(1ii) +1.

Problem (4.3 ). If two lines are parallel to the third line then they are parallel

themselves.

GERES LA
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Three points a,b,c are said to be collinear if they are on one line. Three line
are said to be concurrent if they either pass through one point or are mutually paral-
lel. (Fig.4.4).

a a b c &
B I
y Y

Fig.4.4 Three concurrent lines

As an application of what precedes we shall prove the
Theorem ; The medians of a triangle pass through one point™.
Proof : Let a,b,c( € V) be the vertices of an arbitrarily given triangle. We first

determine an expression for the median from a to the middle of b and c:%(b +c).

It is:a +/\I%(b +c¢) —a} ,A e F. The choice A =% yields the point

%(a+b+c) (4.3)

On the medians from b and ¢ we find in a similar way a point that can be ob-
tained from (4.3) by interchanging the letters. However, (4.3) is invariant under
interchange of letters; hence the point given by (4.3) lies on all medians and is
then the centroid of the triangle.

Problem(4.4). The points (represented by vectors) a,b,c lie on a line if and
only if there are a,8,y e F((a,B,y) #(0,0,0) ) such that

aa +Bb +yc=0 and a +B+vy =0

Problem(4.5). Give a definition of a parallelogram that can also be applied to
a “quadrangle” having four collinear vertices. Let a,b,c,d be the consecutive verti-
ces of a parallelogram in space. Express vector d in terms of a,b,c.

Problem(4.6). The diagonals in a parallelogram bisect each other.

Problem(4. 7). The midpoints of the sides of an arbitrary plane or non-plane
quadrangle form a parallelogram.

Problem (4.8 ). Each of the sides ab and bc of a triangle is extended by itself to
yield the points p and ¢ resp. such that b is between @ and p,c between b and ¢. Line

pq intersects ac in r. Prove that ¢ divides the segment ar into pieces with ration 3:1.

(@ In this theorem and the following problems we assume that the scalars are taken from a

field with characteristic 0 such as the real or complex number fields.

15



Problem(4.9). The four lines through one of the points a,b,c,d and the cen-
troid of the other three pass through one point,the centroid of a,b,c,d.
Problem(4. 10). In a space of arbitrary dimension the centroid of & points

a, - ,a, is by definition the point
z:%(a, +a, +--+a,)

Prove that the line through the centroid of a,, -:-, @, and the centroid of

a (p+q=m) ,passes through the centroid of @, ,**,a

pH’"'7a,r+q e

What consequences does this have for a plane quadrangle and for a tetrahed-
ron? (Take (p,q) =(1,3) and (p,q) =(2,2)).

Problem (4. 11 ). The midpoints of the consecutive sides of the hexagon a,,
a,,*++,az are b, b, ,+++ b, respectively. Prove that the triangles b b;b5 and b,b,b, have
the same centroid.

Problem(4. 12). Give a definition of a parallelopiped. Let abedefgh be a paral-
lelopiped ;let u be the centroid of deb,v that of ¢fh,w’ that of bdeg ,w" that of acfh,
w that of abedefgh. Prove that w =w’ =" and that a,u,v,w and g are collinear.
Calculate the ratio of the line segments thus formed on ag. Hint;take b =a +p ,d =
a +q,e=a+r and express the vertices in terms of a,p,q and r.

Problem(4.13). A set G of points of a real affine space is called convex if it
contains together with any two points a,b also the points on ab between a and b. The
intersection of two convex sets is itself convex.

Problem(4.14).1f a,,**-,a,, are arbitrary points in a real affine space then the
set G of points

# 4 T A Yl
Py + = Yo

Yis""*»Yn real numbers is convex.

The same is true if y, -y, are required to be non-negative.

In this last case prove that we obtain the smallest convex set containing a, , -,
a, (cf. Fig. 4. 5). x is called a weighted mean of the vectors a,, -+, a, with
“weights” y, =0,+-,y,=0

as

as

a
Fig.4.5
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