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Preface

Structural equation models (SEM) are widely used in behavioral,
educational, medical, and social sciences. In the past few years, the growth
of SEM is very rapid. New models and statistical methods have been
developed for better analysis of more complex data structures in
substantive research. These include but are not limited to: nonlinear
structural equation models; structural equation models with mixed
continuous and ordered categorical data; multi-level structural equation
models and finite mixture structural equation models.

Also many methods have been developed to analyze SEMs. One
popular method is the Bayesian approach. An important issue in the
Bayesian analysis of SEMs is model selection. In the literature, Bayes
factor and deviance information criterion (DIC) are commonly used
statistics for Bayesian model selection. However, as commented in Chen et
al(2004), Bayes factor relies on posterior model probabilities, in which
proper prior distributions are needed. And specifying prior distributions for
all models under consideration is usually a challenging task, in particular
when the model space is large. In addition, it is well known that Bayes
factor and posterior model probability are generally sensitive to the choice
of the prior distributions of the parameters. Furthermore the computational
burden of Bayes factor is heavy. Alternatively, criterion-based methods are
attractive in the sense that they do not require proper prior distributions in
general, and the computation is quite simple. One of commonly used
criterion-based methods is DIC, which however assumes the posterior
mean to be a good estimator. For some models like the mixture SEMs,
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WinBUGS does not provide the DIC values. Moreover, if the difference in
DIC values is small, only reporting the model with the smallest DIC value
may be misleading.

Motivated by the limitations of the Bayes factor and DIC above, this
book aims to give a complete and self-contained presentation of a Bayesian
criterion-based model selection method, called the L, measure, for
structural equation models. It is a combination of the posterior predictive
variance and bias, and can be viewed as a Bayesian goodness-of-fit statistic.
The calibration distribution of the L, measure, defined as the prior
predictive distribution of the difference between the L, measures of the
candidate model and the criterion minimizing model, is discussed to help
understanding the L, measure in detail. The computation of the L,
measure is quite simple, and the performance is satisfactory. Thus, it is an
attractive model selection statistic.

In this book, the application of the L, measure to various kinds of
SEMs will be studied, and some illustrative examples will be conducted to
evaluate the performance of the L, measure for model selection of SEMs.
To compare different model selection methods, Bayes factor and DIC will
also be computed. Moreover, different prior inputs and sample sizes are
considered to check the impact of the prior information and sample size on
the performance of the L, measure.

This book addresses a very large public as it includes graduate
students and academic researchers in statistics and applied statistics, in
behavioral, educational, medical, and social sciences. Readers who have
mastered the material in this book will see how the Bayesian
criterion-based method can be extended in a structural equation models to
provide satisfactory result, more general and able to solve problems in a
more complicated models. They will indeed have a new approach giving a
more competitive knowledge related to the complexity of real-life
problems.
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Overview

Structural equation models (SEMs) are very popular in analyzing
relationships among observed and latent variables. Nowadays, SEMs have
been applied to many fields, including but not limited to business,
marketing, education, medicine, psychology and sociology. One of the
main objectives of these applications is to search a good SEM that can
reveal the relationships among covariates, observed and latent variables.
Hence, model selection is an important issue in analyzing SEMs. Moreover,
as explained in Lee (2007, Chap. 5), hypothesis testing can be treated as a
model selection problem.

Recently, the Bayesian approach for analyzing SEMs has received
much attention, see Schines et al. (1999), Dunson (2000), Ansari et al.
(2002), Lee (2007), Lee et al. (2010), Cai et al. (2010), and references
therein. So far, the most widely used Bayesian model selection statistics are
Bayes factor (Kass and Raftery, 1995) and the Deviance Information
Criterion (DIC) (Spiegelhalter et al., 2002). It is well known that for
complex statistical models, the computation of Bayes factor is difficult
(DiCiccio et al., 1997). Gelman and Meng (1998) developed an efficient
algorithm, namely the path sampling, to compute the normalizing constant
of a probability density function. This algorithm has been applied to
compute the Bayes factors of many complex SEMs (see for example, Lee
and Song, 2002, 2003a; Song and Lee, 2007, 2008, and the references
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Bayesian Criterion-Based Model Selection in Structural Equation Models

therein). Like the Bayesian Information Criterion (BIC), DIC takes into
account the number of unknown parameters in the model. As the software
WinBUGS (Spiegelhalter et al., 2003) provides the DIC values for most
SEM:s, the application of DIC is convenient. .

While Bayes factor and DIC have some nice features, they have
limitations. It is well-known that Bayes factor requires proper prior
distributions of the parameters. In fact, it will favor the competitive model
M, if the prior of the parameters in model M, has a very large spread so as
make it non-informative. This is known as the “Bartletts Paradox”.
Moreover, for competitive models M, and M,, such as multilevel SEMs
with very different structures, it is difficult to find a direct path to link them
when applying the path sampling. Under these cases, some auxiliary
models may have to be used in computing the Bayes factor (see Lee, 2007).
This will increase the computational burden. For DIC, it assumes the
posterior mean to be a good estimator; and for some models (for example,
the mixture SEMs), WinBUGS does not give the DIC values. Moreover, if
the difference in DIC values is small, only reporting the model with the
smallest DIC value may be misleading. In this book, motivated by the
above limitations of the Bayes factor and DIC, we propose an attractive
Bayesian statistic for model selection for different kinds of SEMs.

The proposed Bayesian statistic, called the L, measure, is a criterion-
based method that does not require proper prior distributions of the
parameters. It will be shown that the computational burden involved is light,
and the statistic can be obtained conveniently via observations simulated
for the Bayesian estimation. Basically, the L, measure involves two
components. The first component is related to the reliability of the
prediction, and the second component measures the discrepancy between
the prediction and the observed data. Hence, it can be used to examine the
goodness-of-fit of the model to the observed data. We will also consider the
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Chapter 1 Introduction

calibration distribution of the L, measure, which will allow us to compare

two competing models in more details.

1.2 L, Measure for Model Selection

To define the criterion, some notations will be wused. Let
Yo =(y™,,y®™) be a matrix of observations, and
Y™ =(y®,---,y;7) be a matrix of replications, which has the same
distribution with ¥°*, and @ be a vector that contains all the unknown
parameters in the given model.

Gelfand and Ghosh (1998) proposed a minimum posterior predictive
loss approach for model selection. They obtained the criterion by
minimizing posterior loss for a given model and then, for models under
consideration, selecting the one which minimizes this criterion. To define
the loss, let a =(a,, --,a,) be the action matrix which is an estimate trying

to accommodate both Y**, and what we predict for Y™ . For the ith

rep obs

observation in Y, let L(y*,a,;y’)denote the loss for guessing a,
when y**is obtained and y™ is observed. The criterion is defined as

follows:

LY™,a; Y™ =Y E ., o L.a;5™)
i=1

=Y By LOT @)+ L™ a) | (LD
i=1 '

where L(-,-) denotes a certain loss, and different loss will give different
criterion for model choice. Ey,,plym L(-,") indicates the conditional

expectation of L(-,-) which is taken with respect to the conditional

distribution p(y™ |Y°™) . This equation rewards closeness to y™® but also
pLYy; q Yi
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Bayesian Criterion-Based Model Selection in Structural Equation Models

toy™, a, is viewed as a compromise action. The domain .4 for g,
needs not to concur with the support of y,. For instance, if y, is a
p-dimensional vector of discrete data, say p Poisson variables, .4 would

be R' ®---®R"'. When the mean of y, exists, .4 will typically be the
—_—

P
space of the mean. The scalarkin equation (1.1) indicates the relative

regret for departure from Y as compared with departure from Y™ .
When k =0, this criterion can be viewed as finding a better guess a for

Y™ . By using the expected squared Euclidean distance (Ibrahim and Laud,
1994) as the loss function L(-,-), the criterion can be defined as

L(Ymp,a;YObs)= ZEy,"myobsL(yimp’ai;y?bs)
i=1
=zEy{‘P|ynhs(.Yimp _ai)T(yimp —a)+
i=1

D k(" —a) (3™ —a) 1.2)

The minimizing a, is (1+k)"' (4, +ky™), where u, =E(y™1Y*™).
Insert these @, into equation (1.2), and letv=k/(k+1), we get the L,

measure (Ibrahim et al, 2001), which is given by

n

L™= Z[E,,@lyoﬁ O =) O =) +v(u =y ™) (4, -y )}

i=1
=3 e Var(y 1P )+ v~y (-3} (1)
i=1

From the definition, the L, measure can be viewed as a combination

of two terms. The first one is the predicted variance which can be viewed

as a penalty, and the second one is the predicted bias which can be viewed

o4 e



Chapter 1 Introduction

as a goodness-of-fit measure. Therefore, the model with the smallest value
of the L, measure will be selected.

1.3 Outline of the Book

In this book, we focus on model selection for several different kinds of
SEMs. To the best of our knowledge, Bayes factor and DIC are the most
popular methods for model selection of SEMs. Due to the reasons given in
the section of overview, they have some limitations. Hence, there is a need
to develop an efficient and simple approach to deal with the problem of
model selection in structural equation modeling. In Chapter 2, the L,
measure is applied to nonlinear SEMs. In addition, the calibration
distribution of the L, measure is discussed. In Chapter 3, the L, measure
is further applied to nonlinear SEMs with mixed continuous and ordinal
categorical responses. In Chapter 4, considering the existence of
hierarchical observations in real applications, the L, measure, together
with the calibration distribution, is used for model selection of two-level
SEMs. In Chapter 5, a finite mixture of SEMs with unknown number of
components is considered for the analysis of heterogeneous data. The L,
measure is used to perform the model selection of mixture SEMs.
Simulation studies and real data analyses are conducted to demonstrate the
proposed methodologies in these chapters. Besides, to address the
performances of different model selection methods, Bayes factor and DIC
are also computed for model selection in this book. Conclusions and further
developments are presented in Chapter 6, and technical details are given in
the Appendix.
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Chapter 2 L, Measure for Nonlinear
Structural Equation Models

2.1 Introduction

Model selection is an important issue in data analysis. Recently, many
methods for model assessment and model selection have been developed.
However, for structural equation models (SEMs), it is a difficult problem
due to the complexity of SEMs. To deal with the problem, Bayes factor
was proposed for model selection in structural equation modeling (see
Jedidi et al., 1997; Lee and Song, 2001, 2003b; Lee, 2007). But as pointed
out by Ibrahim et al (2001) and Kass and Raftery (1995), this method relies
on posterior model probabilities, and proper prior distributions of unknown
parameters are needed. Therefore, it is usually a major task to specify the
prior distributions for all models under consideration, in particular when
the model space is large. Moreover, Bayes factor is generally sensitive to
the choice of prior distributions, and its computational burden is heavy.
Alternatively, criterion-based methods are attractive in the sense that they
do not require proper prior distributions in general, and the computational
burden is much light compared with Bayes factor. There are many criterion-
based methods for model selection, such as Akaike information criterion
(AIC) (Akaike, 1973, 1981), Bayesian information criterion (BIC) (Schwarz,
1978), and deviance information criterion (DIC) (Spiegelhalter et al., 2002).
AIC and BIC are statistics for model assessment and selection based on
maximum likelihood estimates. In this chapter, a statistic called the L,
measure (see Gelfand and Ghosh, 1998; Ibrahim et al., 2001; Chen et al.,
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Chapter 2 L, Measure for Nonlinear Structural Equation Models

2004) will be applied to model selection in nonlinear SEMs. As discussed
in Ibrahim et al (2001), the L, measure can be written as a sum of two
components, one is related to the reliability of the prediction, and the other
is related to the discrepancy between the prediction and the observed data.
It can be viewed as a Bayesian goodness-of-fit statistic, and can be used as
a criterion for model assessment and selection. By using MCMC method,
the computation of the L, measure is quite easy after obtaining the
estimates of unknown parameters and latent variables. To compare the
performance of different model selection methods, Bayes factor and DIC
will also be computed for model selection in this chapter.

The remainder of this chapter is divided into six sections. In Section
2.2, a brief review of the L, measure for model selection will be given. In
Section 2.3, a nonlinear SEM will be specified. In Section 2.4, the L,
measure for model selection of nonlinear SEMs will be introduced. In
Section 2.5, a simulation study is presented to demonstrate the performance
of the L, measure. In Section 2.6, a real example is analyzed to illustrate
the methodology. A discussion is given in Section 2.7.

2.2 Brief Review of the L, Measure

Let Y =(y™,-,y>) be a matrix of observations, and
Y™ =(y;®,---,y.7), which has the same distribution with Y, be the
future value of an imagined replicate experiment. Suppose that for the
observations inY**, a class of models denoted by {M,,t=0,1,---,T} are
considered. Under a certain model M, , let@ be the parameter vector that
contains all unknown parameters in the model, and a =(a,,---,a,) be an
estimate trying to accommodate both Y** and Y™* . Then a minimum

posterior predictive loss for this model was proposed (see Gelfand and
Ghosh, 1998):



Bayesian Criterion-Based Model Selection in Structural Equation Models

Lk (YObs’Mr) = ZHEHE_V{"’IY“"".M, L(y:ep’ai;yiohs)
=1

- Zn:n:jn{Eyl,,,um_M' L(y™.a,)+kL(y™ .a, )} 2.1)
=1

where kis a weight that indicates the trade-off between the departure
from y™™ and the departure from y™®, L(,-)denotes a certain loss, and

different loss will give different criterion for model choice.
L(y™,a,;y™™) can be interpreted as the loss for guessing @, when y/®is

obs
i

obtained and y;” is observed. In equation (2.1), by using the Euclidean

distance defined in Ibrahim and Laud (1994), the L, measure (see Ibrahim
et al, 2001) for model M, is defined as follows:

L(Y™ M) =Y tr(Var(y™ 1Y*",M,))+

i=1

(=3 (= ) 2.2)
i=1

where u, =E(y™ Y ,M,) , and v=ﬁ,0<v<l. From equation
+

(2.1), ke [0,00) is a trade-off between two losses. k =1 means equal

weights, which makes v =0.5. Therefore, in this chapter, we will consider
the L, measure with v equals to 0.5 . The conditional variance and

expectation in equation (2.2) are taken with respect to the posterior
predictive distribution (y/® |Y**,M,) , which is defined by

pOYTPIY™ M) = jp(yfv 10.M,)p(01Y™ ,M,)d0

From its definition, the L, measure can be viewed as a Bayesian

goodness-of-fit statistic, which measures the performance of a model by a
combination of how close its predictions are to the observed data and the
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Chapter 2 L, Measure for Nonlinear Structural Equation Models

variability of the predictions. The model with the smallest value of the L,

measure will be selected. Specifically, let P = Z; tr(Var(y/® 1Y, M,))

and G=Y" (u-y™) (u-y>) , then LEF¥™ M)=P+vxG ,

where P can be viewed as a penalty term, and G is an error sum of
squares and can be viewed as a goodness-of-fit measure. For over-fitted
model, P will decrease while G will increase; for underestimated model,
P will increase while G will decrease. Therefore, complexity is penalized

and a parsimonious choice is encouraged.

2.3 Model Description

Lety,, fori=1--,n,bea px1 random vector of observed variables,
and Y =(y,,---,»,) - The nonlinear SEM denoted by M is defined by

M: y =u+Aw, +g (2.3)

n, =1, +TF )+, (2.4)

where u isa pxl mean vector; @, isa g¢x1 vector of latent variables;
g is a px1 random vector of error terms, and is independent of @, ;
o, =y ,&")" is partition of @,into endogenous and exogenous latent
vectors 1,(q,x1) and & (g,x1), respectively; IT and I' are matrices
of unknown regression coefficients; F(-)=(f,(), -, f,(-))T is a
vector-valued function with differentiable functions f,(:),---, f,(-), and

r=gq,; 6, isa g,x1 random vector of error terms, and is independent
of & . We assume that, for i=1,--,n

& ~N@OY,), &~N©O,®), ~NOY¥,) (2.5)

where ¥, =diag(y,,,".¥,,) and ¥j;=diag(yy,-,¥s, ) are diagonal

matrices.
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Let G(@,)=(n ,F(&)")', and A, =(IT,T) then equation (2.4) can
be rewritten as #, = 4,G(w,)+d,. Moreover, Let A, and A, be the
submatrices of A corresponding to #, and &, , respectively. And let

II =1 —1IT, which is assumed to be nonsingular, then model M can be

written as

Y, =u+ Al (ITF(&)+d,)+ AE +¢, (2.6)

The Bayesian approach (see Dunson, 2000; Lee and Song, 2004; Lee,

2007) can be applied to the estimation of this nonlinear SEM. Here, we will
focus on model comparison based on the L, measure. For convenience,
the following notations are used. Let Y° :(y,"bs,~--, y,‘l’bs) be the
observed continuous data, where yi"bs =(y,f]bs,---, y;"s)T(i =1,---,n) is the
ith column of Y**, and Y™ =(y,---,y") be the replicated data set
which has the same distribution with Y™, where y/® =(y;™---,y;")".
Let Q=(w,,:-,w,) be the matrix of latent variables. Moreover, let
2 =,-,n,) and 2,=(,--,£) be the submatrices of 2
corresponding to x4, and ¢ , respectively. Furthermore, let
G =(G(w,),-,G(w,)), and let § be the vector that contains all the
unknown elements in u,A,¥, ,IT,I' ,®and ¥;in the model defined

by equations (2.3) and (2.4). Finally, let @ be the space of the parameter
vector @ , and = be the space of the latent variables ¢, fori=1,---,n.

24 L, Measure for Nonlinear Structural
Equation Models

2.4.1 Definition of the L measure

In this part, the L, measure will be applied to the nonlinear SEM, M , .

« 10+



