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Part I

SETTING THE SCENE

This part of the book consists of two chapters, the titles of which (“Preliminaries” and “Prerequisites,” respectively)
are more or less self-explanatory.






Chapter 1

Preliminaries

(On being asked what jazz is:)
Man, if you gotta ask, you'll never know
—Louis Armstrong (attrib.)

This book has as subtitle Normal Forms and All That Jazz. Clearly some explanation is needed! First of all, of
course, I’'m talking about design theory, and everybody knows normal forms are a major component of that theory;
hence the first part of my subtitle. But there’s more to the theory than just normal forms, and that fact accounts for
that subtitle’s second part. Third, it’s unfortunately the case that—from the practitioner’s point of view, at any
rate—design theory is riddled with terms and concepts that seem to be difficult to understand and don’t seem to have
much to do with design as actually done in practice. That’s why I framed the latter part of my subtitle in colloguial
(not to say slangy) terms; I wanted to convey the idea, or impression, that although we’d necessarily be dealing with
“difficult” material on occasion, the treatment of that material would be as undaunting and unintimidating as I could
make it. But whether I’ve succeeded in that aim is for you to judge, of course.

I’d also like to say a little more on the question of whether design theory has anything to do with design as
done in practice. Let me be clear: Nobody could, or should, claim that designing databases is easy. But a sound
knowledge of theory can only help. In fact, if you want to do design properly—if you want to build databases that
are as robust, flexible, and accurate as they’re supposed to be—then you simply have to come to grips with design
theory. There’s just no alternative: at least, not if you want to claim to be a professional. Design theory is the
scientific foundation for database design, just as the relational model is the scientific foundation for database
technology in general. And just as anyone professionally involved in database technology in general needs to be
familiar with the relational model, so anyone involved in database design in particular needs to be familiar with
design theory. Proper design is so important! After all, the database lies at the heart of so much of what we do in
the computing world; so if it’s badly designed, the negative impacts can be extraordinarily widespread.

SOME QUOTES FROM THE LITERATURE

Since we’re going to be talking quite a lot about normal forms, I thought it might be—well, not enlightening,
perhaps, but entertaining (?)—to begin with a few quotes from the literature. The starting point for the whole
concept of normal forms is, of course, first normal form (1NF), and so an obvious question is: Do you know what
INF is? As the following quotes demonstrate (sources omitted to protect the guilty), a lot of people don’t:

B To achieve first normal form, each field in a table must convey unique information.
B An entity is said to be in the first normal form (INF) when all attributes are single valued.

B A relation is in INF if and only if all underlying domains contain atomic values only.

B Ifthere are no repeating groups of attributes, then [the table] is in INF.
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Now, it might be argued that some if not all of these quotes are at least vaguely correct—but they’re all

hopelessly sloppy, even when they’re generally on the right lines. (In case you're wondering, I’ll be giving a precise
and accurate definition of INF in Chapter 4.)

full:

Let’s take a closer look at what’s going on here. Here again is the first of the foregoing quotes, now given in

To achieve first normal form, each field in a table must convey unique information. For example, if you had a Customer
table with two columns for the telephone number, your design would violate first normal form. First normal form is
fairly easy to achieve, since few folks would see a need for duplicate information in a table.

OK, so apparently we’re talking about a design that looks something like this:

CUSTNO PHONENO1 PHONENO2

Now, I can’t say whether this is a good design or not, but it certainly doesn’t violate INF. (I can’t say

whether it’s a good design because I don’t know exactly what “two columns for the telephone number” means. The
phrase “duplicate information in a table” suggests we’re recording the same phone number twice, but such an
interpretation is absurd on its face. But even if that interpretation is correct, it still wouldn’t constitute a violation of
INF as such.)

Here’s another one:

First Normal Form ... means the table should have no “repeating groups” of fields ... A repeating group is when you
repeat the same basic attribute (ficld) over and over again. A good example of this is when you wish to store the items
you buy at a grocery store ... [and the writer goes on to give an example, pri bly t to illustrate the concept of a
repeating group, of a table called Item Table with columns called Customer, Iteml, Item2, Item3, and Item4):

CUSTOMER ITEM1 ITEM2 ITEM3 ITEM4

Well, this design is almost certainly bad—what happens if the customer doesn’t purchase exactly four

items?—but the reason it’s bad isn’t that it violates 1NF; like the previous example, in fact, it’s a INF design. And
while it’s true that INF does mean, loosely, “no repeating groups,” a repeating group is not “when you repeat the
same basic attribute over and over again.” (What it really is I'll explain in Chapter 4, when I explain what INF
really is.)

How about this one (a cry for help found on the Internet)? I’'m quoting it absolutely verbatim, except that

I've added some boldface:

I have been trying to find the correct way of normalizing tables in Access. From what I understand, it goes from the 1st
normal form to 2nd, then 3rd. Usually, that’s as far as it goes, but sometimes to the 5th and 6th. Then, there’s also the
Cobb 3rd. This all makes sense to me. I am supposed to teach a class in this starting next week, and I just got the
textbook. It says something entirely different. It says 2nd normal form is only for tables with a multiple-field primary
key, 3rd normal form is only for tables with a single-field key. 4th normal form can go from st to 4th, where there are
no independent one-to-many relationships between primary key and non-key fields. Can someone clear this up for me
please?
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And one more (this time with a “helpful” response):

> It’s not clear to me what “normalized” means. Can you be specific about what normalization rules you are
> referring to? In what way is my schema not normalized?

Normalization: The process of replacing duplicate things with a reference to the original thing.

For example, given “john is-a person” and “john obeys army,” one observes that the “john” in the second sentence is a
duplicate of “john” in the first sentence. Using the means provided by your system, the second sentence should be stored
as “—>john obeys army.”

A NOTE ON TERMINOLOGY

As I'm sure you noticed, the quotes in the previous section were expressed for the most part in the familiar “user
friendly” terminology of tables, rows, and columns (or fields). In this book, by contrast, I’ll tend to favor the more
formal terms relation, tuple (usnally pronounced to thyme with couple), and atzribute. 1 apologize if this decision
on my p:m makes the text a little harder to follow, but I do have my reasons. As I said in SQL and Relational
Theory:

I'm generally sympathetic to the idea of using more user friendly terms, if they can help make the ideas more palatable.
In the case at hand, however, it seems to me that, regrettably, they don’t make the ideas more palatable; instead, they
distort them, and in fact do the cause of genuine understanding a grave disservice. The truth is, a relation is not a table, a
tuple is not a row, and an attribute is not a column. And while it might be acceptable to pretend otherwise in informal
contexts—indeed, I often do exactly that myself—I would argue that it’s acceptable only if we all understand that the
more user friendly terms are just an approximation to the truth and fail overall to capture the essence of what’s really
going on. To put it another way, if you do understand the true state of affairs, then judicious use of the user friendly
terms can be a good idea; but in order to learn and appreciate that true state of affairs in the first place, you really do need
to come to grips with the formal terms.

To the foregoing, let me add that (as I said in the preface) I do assume you know exactly what relations, attributes,
and tuples are!—though in fact formal definitions of these constructs can be found in Chapter 5.

There’s another terminological matter I need to get out of the way, too. The relational model is, of course,
data model. Unfortunately, however, this latter term has two quite distinct meanings in the database world? The
first and more fundamental one is this:

B Definition: A data model (first sense) is an abstract, self-contained, logical definition of the data structures,
data operators, and so forth, that together make up the abstract machine with which users interact.

This is the meaning we have in mind when we talk about the relational model in particular: The data structures in
the relational model are relations, of course, and the data operators are the relational operators projection, join, and

' | remind you from the preface that throughout this book I use SQL and Relational Theory as an abbreviated form of reference to my book SQL
and Relational Theory: How to Write Accurate SQL Code (2nd edition, O’Reilly, 2012).

2 This observation is undeniably correct. However, one reviewer wanted me to add that the two meanings can be thought of as essentially the
same concept at different levels of abstraction.
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the rest. (As for that “and so forth” in the definition, it covers such matters as keys, foreign keys, and various related
concepts.)

The second meaning of the term data model is as follows:

B Definition: A data model (second sense) is a model of the data—especially the persistent data—of some
particular enterprise.

In other words, a data model in the second sense is just a (logical, and possibly somewhat abstract) database design.
For example, we might speak of the data model for some bank, or some hospital, or some government department.

Having explained these two different meanings, I’d like to draw your attention to an analogy that I think
nicely illuminates the relationship between them:

B A data model in the first sense is like a programming language, whose constructs can be used to solve many
specific problems but in and of themselves have no direct connection with any such specific problem.

M A data model in the second sense is like a specific program written in that language—it uses the facilities
provided by the model, in the first sense of that term, to solve some specific problem.

It follows from all of the above that if we’re talking about data models in the second sense, then we might
reasonably speak of “relational models” in the plural, or “a” relational model (with an indefinite article). But if
we’re talking about data models in the first sense, then there's only one relational model, and it’s the relational
model (with the definite article).

Now, as you probably know, most writings on database design, especially if their focus is on pragma rather
than the underlying theory, use the term “model,” or “data model,” exclusively in the second sense. But—please
note carefully!—I don’t follow this practice in the present book; in fact, I don’t use the term “model” at all, except
occasionally to refer to the relational model as such.

THE RUNNING EXAMPLE

Now let me introduce the example I’ll be using as a basis for most of the discussions in the rest of the book: the
familiar—not to say hackneyed—suppliers-and-parts database. (I apologize for dragging out this old warhorse yet
one more time, but I believe that using essentially the same example in a variety of different books and publications
can help, not hinder, learning.) Sample values are shown in Fig. 1.1.3 To elaborate:

B Suppliers: Relvar S denotes suppliers.* Each supplier has one supplier number (SNO), unique to that
supplier; one name (SNAME), not necessarily unique (though the SNAME values in Fig. 1.1 do happen to be
unique); one status value (STATUS), representing some kind of ranking or preference level among suppliers;
and one location (CITY).

3 For reasons that will become clear later, the values shown in Fig. 1.1 differ in two small respects from those in other books of mine: The status
for supplier S2 is shown as 30 instead of 10, and the city for part P3 is shown as Paris instead of Oslo.

* If you don’t know what a relvar is, for now you can just take it to be a table in the usual database sense. See Chapter 2 for further explanation.
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Parts: Relvar P denotes parts (more accurately, kinds of parts). Each kind of part has one part number
(PNO), which is unique; one name (PNAME), not necessarily unique; one color (COLORY); one weight
(WEIGHT); and one location where parts of that kind are stored (CITY).

Shipments: Relvar SP denotes shipments (it shows which parts are supplied, or shipped, by which suppliers).
Each shipment has one supplier number (SNO), one part number (PNO), and one quantity (QTY). Also, I
assume for the sake of the example that there’s at most one shipment at any one time for a given supplier and
a given part, and so each shipment has a supplier-number/part-number combination that’s unique.

S SP
SNO SNAME STATUS CITY SNO PNO QTY
Sl Smith 20 London Sl P1 300
S2 Jones 30 Paris s1 P2 200
S3 Blake 30 Paris s1 P3 400
sS4 Clark 20 London Sl P4 200
55 Adams 30 Athens 51 P5 100
S1 Po6 100
P 52 Pl 300
S2 P2 400
PNO PNAME COLOR WEIGHT CITY 53 P2 200
54 P2 200
Pl Nut Red 12.0 London S4 P4 300
P2 Bolt Green 17.0 Paris sS4 P5 400
P3 Screw Blue 17.0 Paris..
P4 Screw Red 14.0 London
P5 Cam Blue 12.0 Paris
P6 Cog Red 19.0 London

Fig. 1.1: The suppliers-and-parts database—sample values

Before going any further, I need to review the familiar concept of keys, in the relational sense of that term. First of
all, as I’m sure you know, every relvar has at least one candidate key. A candidate key is basically just a unique
identifier; in other words, it’s a combination of attributes—often but not always a “combination” consisting of just a
single attribute—such that every tuple in the relvar has a unique value for the combination in question. For
example, with respect to the database of Fig. 1.1:

Every supplier has a unique supplier number and every part has a unique part number, so {SNO} is a
candidate key for S and {PNO} is a candidate key for P.

As for shipments, given the assumption that there’s at most one shipment at any one time for a given supplier
and a given part, {SNO,PNO} is a candidate key for SP.

Note the braces, by the way; to repeat, candidate keys are always combinations, or sets, of attributes (even

when the set in question contains just one attribute), and the conventional representation of a set on paper isasa
commalist of elements enclosed in braces. Note: The useful term commalist can be defined as follows: Let xyz be
some syntactic construct (for example, “attribute name™). Then the term xyz commalist denotes a sequence of zero
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or more xpz’s in which each pair of adjacent xyz’s is separated by a comma (as well as, optionally, one or more
spaces before or after the comma or both).

Next, as I’'m sure you also know, a primary key is a candidate key that’s been singled out in some way for
some kind of special treatment. Now, if the relvar in question has just one candidate key, then it doesn’t make any
real difference if we call that key primary. But if the relvar has two or more candidate keys, then it’s usual to choose
one of them to be primary, meaning it’s somehow “more equal than the others.” Suppose, for example, that
suppliers always have both a unique supplier number and a unique supplier name, so that {SNO} and {SNAME} are
both candidate keys. Then we might choose {SNO}, say, to be the primary key.

Observe now that I said it’s usual to choose a primary key. Indeed it is usual—but it’s not 100 percent
necessary. If there’s just one candidate key, then there’s no choice and no problem; but if there are two or more,
then having to choose one and make it primary smacks a little bit of arbitrariness, at least to me. (Certainly there are
situations where there don’t seem to be any good reasons for making such a choice. There might even be good
reasons for not doing so. Appendix A elaborates on such matters.) For reasons of familiarity, I'll usually follow the
primary key discipline myself in this book—and in pictures like Fig. 1.1 I'll indicate primary key attributes by
double underlining—but I want to stress the fact that it’s really candidate keys, not primary keys, that are significant
from a relational point of view, and indeed from a design theory point of view as well. Partly'for such reasons, from
this point forward I'll use the term ey, unqualified, to mean any candidate key, regardless of whether the candidate
key in question has additionally been designated as primary. (In case you were wondering, the special treatment
enjoyed by primary keys over other candidate keys is mainly syntactic in nature, anyway; it isn’t fundamental, and it
isn’t very important.)

More terminology: First, a key involving two or more attributes is said to be composite (and a noncomposite
key is sometimes said to be simple). Second, if a given relvar has two or more keys and one is chosen as primary,
then the others are sometimes said to be alternate keys (see Appendix A). Third, a foreign key is a combination, or
set, of attributes FX in some relvar R2 such that each FK value is required to be equal to some value of some key K
in some relvar RI (RIand R2 not necessarily distinet).” With reference to Fig. 1.1, for example, {SNO} and {PNO}
are both foreign keys in relvar SP, corresponding to keys {SNO} and {PNO} in relvars S and P, respectively.

THE PLACE OF DESIGN THEORY

To repeat something I said in the preface, by the term design 1 mean logical design, not physical design. Logical
design is concerned with what the database looks like to the user (which means, loosely, what relvars exist and what
constraints apply to those relvars); physical design, by contrast, is concerned with how a given logical design maps
to physical storage.® And the term design theory refers specifically to logical design, not physical design—the point
being that physical design is necessarily dependent on aspects (performance aspects in particular) of the target
DBMS, whereas logical design is, or should be, DBMS independent. Throughout this book, then, the unqualified
term design should be understood to mean logical design specifically, barring explicit statements to the contrary.

Now, design theory as such isn’t part of the relational model; rather, it’s a separate theory that builds on top
of that model. (It’s appropriate to think of it as part of relational theory in general, but it’s not, to repeat, part of the
relational model per se.) Thus, design concepts such as further normalization are themselves based on more
fundamental notions—e.g., the projection and join operators of the relational algebra—that are part of the relational
model. (All of that being said, it could certainly be argued that design theory is a logical consequence of the

S This definition is deliberately a little simplified (though it’s good enough for present purposes). A better one can be found in SQL and
Relational Theory.

© Be warned, however, that other writers (a) use the terms logical design and physical design to mean something else and (b) use other terms to
mean what I mean by them. Caveat lector.
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relational model, at least in part. In other words, it would be inconsistent to agree with the relational model in
general but not to agree with the design theory that’s based on it.)

The overall objective of logical design is to achieve a design that’s (a) hardware independent, for obvious
reasons; (b) operating system and DBMS independent, again for obvious reasons; and finally, and perhaps a little
controversially, (c) application independent (in other words, we’re concerned primarily with what the data is, rather
than with how it’s going to be used). Application independence in this sense is desirable for the very good reason
that it’s normally—perhaps always—the case that not all uses to which the data will be put are known at design
time; thus, we want a design that’ll be robust, in the sense that it won’t be invalidated by the advent of application
requirements that weren’t foreseen at the time of the original design. Observe that one important consequence of
this state of affairs is that we aren’t (or at least shouldn’t be) interested in making design compromises for physical
performance reasons. Design theory should never be driven by performance considerations.

Back to design theory as such. As we’ll see, that theory includes a number of formal theorems, theorems that
provide practical guidelines for designers to follow. So if you’re a designer, you need to be familiar with those
theorems. Let me quickly add that I don’t mean you have to know how to prove those theorems (though in fact the
proofs are often quite simple); what [ mean is, you have to know what the theorems say—i.e., you have to know the
results—and you have to be prepared to apply those results. That’s the nice thing about theorems: Once
somebody’s proved them, their results become available for anybody to use whenever they need to.

Now, it’s sometimes claimed, not entirely unreasonably, that all design theory really does is bolster up your
intuition. What do I mean by this remark? Well, consider the suppliers-and-parts database. The obvious design for
that database is the one illustrated in Fig. 1.1; [ mean, it’s “obvious” that three relvars are necessary, that attribute
STATUS belongs in relvar S, that attribute COLOR belongs in relvar P, that attribute QTY belongs in relvar SP, and
so on. But why exactly are these things obvious? Well, suppose we try a different design; suppose we move the
STATUS attribute out of relvar S, for example, and into relvar SP (intuitively the wrong place for it, since status is a

property of suppliers, not shipments). Fig. 1.2 below shows a sample value for this revised shipments relvar, which
Il call STP to avoid confusion:’

STP SNO STATUS PNO QTY
S1 20 Pl 300
Sl 20 P2 200
sl 20 P3 400
Sl 20 P4 200
s1 20 P5 100
S1 20 P6 100
S2 30 Pl 300
S2 30 P2 400
S3 30 P2 200
54 20 P2 200
S4 20 P4 300
sS4 20 P5 400

Fig. 1.2: Relvar STP—sample value

7 For obvious reasons I use T, not S, as an abbreviation for STATUS, here and throughout this book.



