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Discrete Distributions

Bernoulli with parameter p

Binomial with parameters n and p

m.g.f. Yy()=pe+1—-p

pf. f@) =p*Q - p)-, Ff&x=0)pa-py,
forx=0,1 forx=0,...,n

Mean D np

Variance | p(1- p) np(l — p)

Y ()= (pe' +1— p)*

Uniform on the integers a, . . .

Hypergeometric with parameters A, B, and n

pd. F0 =5t
forx=a,...,b

Mean I’J’Ta

Variance Sb;al(f#)‘

m.g.f. Y= %

A B
Foo= (*(l&*;; ,
for x = max{0, n — b}, . . ., min{n, A}

nA
A+B

nAB A+B-n
(A+B)2 A+B-1

Nothing simpler than y(¢) =3, f(x)e™*

Geometric with parameter p

Negative binomial with parameters r and p

pL fx)=p( - p)*,
forx=0,1,...

Mean 1—;3

Variance 1—;25

m.g.f. 'I/f (t) = m% s

for t <log(1/[1 - p)

f@=(Ypa-py,
forx=0,1,...

r(l-p)
14

r(-p

P
VO = (=)

for ¢ < log(1/[1~ p)

Poisson with mean A

Multinomial with parameters n and (py, ..., pg)

pf fy =,
forx=0,1,...
Mean A

Variance | A

m.g.f. () =MD

f(xl’ v xk) = (xl,.r.l.,xk)letl e p:k’
forx;+---+x;=nandallx; >0

E(X,-)=np,-,
fori=1,...,k

Var(X;) = np;(1 — p;), Cov(X;, X;) = —np;p;,
fori,j=1,...,k

Multivariate m.g.f. can be defined,
but is not defined in this text.




Continuous Distributions

vii

Beta with parameters o and

Uniform on the interval [a, b]

p.d.f. fx)= T-I:(%)F%x"_l(l —x)f-1,

for0<x <1

Mean &

a+B
. [
Variance | oo o pTD
m.g.f. Not available in simple form

f@ =5,
fora<x<b
atb
2
!b—a!z
12

e bt

V) = T

Exponential with parameter g

Gamma with parameters a and 8

p.adL. f(x) = BeFx,
forx >0
1
Mean 7
Variance ‘—315

m.g.f. lll'(t) = E%y
fort <8

fx) = fxalebs,

forx >0

Wl ™R

yor=(&)

forr < g

Normal with mean p and variance o

2

Bivariate normal with means ;11 and pu,,
variances 67 and o, and correlation p

pdf. F0) = ks exp (—312—;%12-)

Mean "

Variance | o2

m.gf. ¥(r) =exp (p,t + %)

Formula is too large to print here.
See Eq. (5.10.2) on page 338.

E(Xl) = His
fori=1,2
2
Covariance matrix: ( i palzd 2)
pPO102 5]

Bivariate m.g.f. can be defined,
but is not defined in this text.
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Continuous Distributions

Lognormal with parameters x and o2

F with m and n degrees of freedom

1 log(x)— )2
p.d.f. L (_(Og(zxa)z ) )
forx >0
Mean enta’/2

Variance | e24+7[¢7” — 1]

m.gf. Not finite for ¢t > 0

PO )
T(%m)r(%n) (mx+n)mtm/Z

forx >0

n,ifn>2

n-2?

2n2(m+n—2! :
poy oy ifn>4

Not finite forz > 0

t with m degrees of freedom

x2 with m degrees of freedom

(g 28 —(m+1)/2
p.d.f. fx)= o)1 () (1 x_)

m
Mean 0,ifm>1
Variance %, ifm>2

m.g.f. Not finite for ¢ # 0

fx= 42,,1,2],1(”‘/2)x(”’/z)_le“"/z, forx >0

m
2m

Yyt =(1-2)""72,
fort <1/2

Cauchy centered at u

Pareto with parameters xg and o

_ 1
p.df. fx)= e
Mean Does not exist
Variance | Does not exist

m.g.f. Not finite for ¢ #0

ax?
fx)= ﬁ,forx > X

@xg
= ifa>1

ax?
(@—1)(@-2)’

Not finite for¢ > 0

foa>2
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[.I The History of Probability

The use of probability to measure uncertainty and variability dates back hundreds
of years. Probability has found application in areas as diverse as medicine, gam-
bling, weather forecasting, and the law.

The concepts of chance and uncertainty are as old as civilization itself. People have
always had to cope with uncertainty about the weather, their food supply, and other
aspects of their environment, and have striven to reduce this uncertainty and its
effects. Even the idea of gambling has a long history. By about the year 3500 B.c.,
games of chance played with bone objects that could be considered precursors of
dice were apparently highly developed in Egypt and elsewhere. Cubical dice with
markings virtually identical to those on modern dice have been found in Egyptian
tombs dating from 2000 B.c. We know that gambling with dice has been popular ever
since that time and played an important part in the early development of probability
theory.

Itis generally believed that the mathematical theory of probability was started by
the French mathematicians Blaise Pascal (1623-1662) and Pierre Fermat (1601-1665)
when they succeeded in deriving exact probabilities for certain gambling problems
involving dice. Some of the problems that they solved had been outstanding for about
300 years. However, numerical probabilities of various dice combinations had been
calculated previously by Girolamo Cardano (1501-1576) and Galileo Galilei (1564—
1642).

The theory of probability has been developed steadily since the seventeenth
century and has been widely applied in diverse fields of study. Today, probability
theory is an important tool in most areas of engineering, science, and management.
Many research workers are actively engaged in the discovery and establishment of
new applications of probability in fields such as medicine, meteorology, photography
from satellites, marketing, earthquake prediction, human behavior, the design of
computer systems, finance, genetics, and law. In many legal proceedings involving
antitrust violations or employment discrimination, both sides will present probability
and statistical calculations to help support their cases.
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Chapter 1 Introduction to Probability

References

The ancient history of gambling and the origins of the mathematical theory of prob-
?bility) are discussed by David (1988), Ore (1960), Stigler (1986), and Todhunter
1865).

Some introductory books on probability theory, which discuss many of the same
topics that will be studied in this book, are Feller (1968); Hoel, Port, and Stone (1971);
Meyer (1970); and Olkin, Gleser, and Derman (1980). Other introductory books,
which discuss both probability theory and statistics at about the same level as they
will be discussed in this book, are Brunk (1975); Devore (1999); Fraser (1976); Hogg
and Tanis (1997); Kempthorne and Folks (1971); Larsen and Marx (2001); Larson
(1974); Lindgren (1976); Miller and Miller (1999); Mood, Graybill, and Boes (1974);
Rice (1995); and Wackerly, Mendenhall, and Schaeffer (2008).

1.2 Interpretations of Probability

This section describes three common operational interpretations of probability.
Although the interpretations may seem incompatible, it is fortunate that the calcu-
lus of probability (the subject matter of the first six chapters of this book) applies
equally well no matter which interpretation one prefers.

In addition to the many formal applications of probability theory, the concept of
probability enters our everyday life and conversation. We often hear and use such
expressions as “It probably will rain tomorrow afternoon,” “It is very likely that
the plane will arrive late,” or “The chances are good that he will be able to join us
for dinner this evening.” Each of these expressions is based on the concept of the
probability, or the likelihood, that some specific event will occur.

Despite the fact that the concept of probability is such a common and natural
part of our experience, no single scientific interpretation of the term probability is
accepted by all statisticians, philosophers, and other authorities. Through the years,
each interpretation of probability that has been proposed by some authorities has
been criticized by others. Indeed, the true meaning of probability is still a highly
controversial subject and is involved in many current philosophical discussions per-
taining to the foundations of statistics. Three different interpretations of probability
will be described here. Each of these interpretations can be very useful in applying
probability theory to practical problems.

The Frequency Interpretation of Probability

In many problems, the probability that some specific outcome of a process will be
obtained can be interpreted to mean the relative frequency with which that outcome
would be obtained if the process were repeated a large number of times under similar
conditions. For example, the probability of obtaining a head when a coin is tossed is
considered to be 1/2 because the relative frequency of heads should be approximately
1/2 when the coin is tossed a large number of times under similar conditions. In other
words, it is assumed that the proportion of tosses on which a head is obtained would
be approximately 1/2.

Of course, the conditions mentioned in this example are too vague to serve as the
basis for a scientific definition of probability. First, a “large number” of tosses of the
coin is specified, but there is no definite indication of an actual number that would
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be considered large enough. Second, it is stated that the coin should be tossed each
time “under similar conditions,” but these conditions are not described precisely. The
conditions under which the coin is tossed must not be completely identical for each
toss because the outcomes would then be the same, and there would be either all
heads or all tails. In fact, a skilled person can toss a coin into the air repeatedly and
catch it in such a way that a head is obtained on almost every toss. Hence, the tosses
must not be completely controlied but must have some “random” features.
Furthermore, it is stated that the relative frequency of heads should be “approx-
imately 1/2,” but no limit is specified for the permissible variation from 1/2. If a coin
were tossed 1,000,000 times, we would not expect to obtain exactly 500,000 heads.
Indeed, we would be extremely surprised if we obtained exactly 500,000 heads. On
the other hand, neither would we expect the number of heads to be very fat from
500,000. It would be desirable to be able to make a precise statement of the like-
lihoods of the different possible numbers of heads, but these likelihoods would of
necessity depend on the very concept of probability that we are trying to define.
Another shortcoming of the frequency interpretation of probability is that it
applies only to a problem in which there can be, at least in principle, a large number of
similar repetitions of a certain process. Many important problems are not of this type.
For example, the frequency interpretation of probability cannot be applied directly
to the probability that a specific acquaintance will get married within the next two
years or to the probability that a particular medical research project will lead to the
development of a new treatment for a certain disease within a specified period of time.

The Classical Interpretation of Probability

The classical interpretation of probability is based on the concept of equally likely
outcomes. For example, when a coin is tossed, there are two possible outcomes: a
head or a tail. If it may be assumed that these outcomes are equally likely to occur,
then they must have the same probability. Since the sum of the probabilities must
be 1, both the probability of a head and the probability of a tail must be 1/2. More
generally, if the outcome of some process must be one of n different outcomes, and
if these n outcomes are equally likely to occur, then the probability of each outcome
is1/n.

Two basic difficulties arise when an attempt is made to develop a formal defi-
nition of probability from the classical interpretation. First, the concept of equally
likely outcomes is essentially based on the concept of probability that we are trying
to define. The statement that two possible outcomes are equally likely to occur is the
same as the statement that two outcomes have the same probability. Second, no sys-
tematic method is given for assigning probabilities to outcomes that are not assumed
to be equally likely. When a coin is tossed, or a well-balanced die is rolled, or a card is
chosen from a well-shuffled deck of cards, the different possible outcomes can usually
be regarded as equally likely because of the nature of the process. However, when the
problem is to guess whether an acquaintance will get married or whether a research
project will be successful, the possible outcomes would not typically be considered
to be equally likely, and a different method is needed for assigning probabilities to
these outcomes.

The Subjective Interpretation of Probability

According to the subjective, or personal, interpretation of probability, the probability
that a person assigns to a possible outcome of some process represents her own
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judgment of the likelihood that the outcome will be obtained. This judgment will be
based on each person’s beliefs and information about the process. Another person,
who may have different beliefs or different information, may assign a different
probability to the same outcome. For this reason, it is appropriate to speak of a
certain person’s subjective probability of an outcome, rather than to speak of the
true probability of that outcome.

As an illustration of this interpretation, suppose that a coin is to be tossed once.
A person with no special information about the coin or the way in which it is tossed
might regard a head and a tail to be equally likely outcomes. That person would
then assign a subjective probability of 1/2 to the possibility of obtaining a head. The
person who is actually tossing the coin, however, might feel that a head is much
more likely to be obtained than a tail. In order that people in general may be able
to assign subjective probabilities to the outcomes, they must express the strength of
their belief in numerical terms. Suppose, for example, that they regard the likelihood
of obtaining a head to be the same as the likelihood of obtaining a red card when one
card is chosen from a well-shuffled deck containing four red cards and one black card.
Because those people would assign a probability of 4/5 to the possibility of obtaining
a red card, they should also assign a probability of 4/5 to the possibility of obtaining
a head when the coin is tossed. ‘

This subjective interpretation of probability can be formalized. In general, if
people’s judgments of the relative likelihoods of various combinations of outcomes
satisfy certain conditions of consistency, then it can be shown that their subjective
probabilities of the different possible events can be uniquely determined. However,
there are two difficulties with the subjective interpretation. First, the requirement
that a person’s judgments of the relative likelihoods of an infinite number of events
be completely consistent and free from contradictions does not seem to be humanly
attainable, unless a person is simply willing to adopt a collection of judgments known
to be consistent. Second, the subjective interpretation provides no “objective” basis
for two or more scientists working together to reach a common evaluation of the
state of knowledge in some scientific area of common interest.

On the other hand, recognition of the subjective interpretation of probability
has the salutary effect of emphasizing some of the subjective aspects of science. A
particular scientist’s evaluation of the probability of some uncertain outcome must
ultimately be that person’s own evaluation based on all the evidence available. This
evaluation may well be based in part on the frequency interpretation of probability,
since the scientist may take into account the relative frequency of occurrence of this
outcome or similar outcomes in the past. It may also be based in part on the classical
interpretation of probability, since the scientist may take into account the total num-
ber of possible outcomes that are considered equally likely to occur. Nevertheless,
the final assignment of numerical probabilities is the responsibility of the scientist
herself. '

The subjective nature of science is also revealed in the actual problem that a
particular scientist chooses to study from the class of problems that might have
been chosen, in the experiments that are selected in carrying out this study, and
in the conclusions drawn from the experimental data. The mathematical theory of
probability and statistics can play an important part in these choices, decisions, and
conclusions.

Note: The Theory of Probability Does Not Depend on Interpretation. The math-
ematical theory of probability is developed and presented in Chapters 1-6 of this
book without regard to the controversy surrounding the different interpretations of



