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Preface to the Second
Edition

I originally wrote The Art of Analog Layout as a companion volume to a series of
lectures. Many people encouraged me to publish it. At first I was reluctant to do so,
for I thought that it would find a rather limited audience. Publication has proven my
concerns quite unfounded. To my astonishment, The Art of Analog Layout has even
been translated into Chinese!

The passage of several years has alerted me to the limitations of the first edi-
tion and prompted an extensive revision. Every chapter has been examined and
corrected. Many new passages have been added, along with some 50 new illustra-
tions to accompany them. New topics introduced in the second edition include the
following:

e Advanced metallization systems
Dielectric isolation

Failure mechanisms of MOS transistors
Integrated inductors

MOS safe operating area

Nonvolatile memory

In preparing this edition, I have drawn extensively upon the experience and wis-
dom of my colleagues at Texas Instruments. I have also made constant reference to
the resources available upon the IEEE Xplore website, most particularly those con-
tained in the IEEE Journal of Electron Devices. I thank all the many people who
have contributed to my own understanding or who have corrected my many mis-
takes. A work of this length and magnitude will never prove perfect, but the second
edition greatly improves upon the first.

ALAN HASTINGS
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Preface to the First Edition

An integrated circuit reveals its true appearance only under high magnification. The
intricate tangle of microscopic wires covering its surface and the equally intricate
patterns of doped silicon beneath it, all follow a set of blueprints called a layout. The
process of constructing layouts for analog and mixed-signal integrated circuits has
stubbornly defied all attempts at automation. The shape and placement of every
polygon requires a thorough understanding of the principles of device physics, semi-
conductor fabrication, and circuit theory. Despite 30 years of research, much re-
mains uncertain. What information there is lies buried in obscure journal articles
and unpublished manuscripts. This textbook assembles that information between a
single set of covers. While primarily intended for use by practicing layout designers,
it should also prove valuable to circuit designers who desire a better understanding
of the relationship between circuits and layouts.

The text has been written for a broad audience, some of whom have had only lim-
ited exposure to higher mathematics and solid-state physics. The amouynt of mathe-
matics has been kept to an absolute minimum, and care has been taken to identify
all variables and to use the most accessible units. The reader need only have a famil-
iarity with basic algebra and elementary electronics. Many of the exercises assume
that the reader also has access to layout editing software; but those who lack such
resources can complete many of the exercises with pencil and paper.

The text consists of 14 chapters and five appendices. The first two chapters pro-
vide an overview of device physics and semiconductor processing. These chapters
avoid mathematical derivations and instead emphasize simple verbal explanations
and visual models. The third chapter presents three archetypal processes: standard
bipolar, silicon-gate CMOS, and analog BiCMOS. The presentation focuses upon
development of cross sections and the correlation of these cross sections to con-
ventional layout views of sample devices. The fourth chapter covers common fail-
ure mechanisms and emphasizes the role of layout in determining reliability.
Chapters 5 and 6 cover the layout of resistors and capacitors. Chapter 7 presents
the principles of matching, using resistors and capacitors as examples. Chapters 8
through 10 cover the layout of bipolar devices, while Chapters 11 and 12 cover the
layout and matching of field-effect transistors. Chapters 13 and 14 cover a variety
of advanced topics, including device mergers, guard rings, ESD protection struc-
tures, and floorplanning. The appendices include a list of acronyms, a discussion of
Miller indices, sample layout rules for use in working the exercises, and the deriva-
tion of formulas used in the text.

ALAN HASTINGS
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Device Physics

Before 1960, most electronic circuits depended upon vacuum tubes to perform the
critical tasks of amplification and rectification. An ordinary mass-produced AM
radio required five tubes, while a color television needed no fewer than twenty.
Vacuum tubes were large, fragile, and expensive. They dissipated a lot of heat and
were not very reliable. So long as electronics depended upon them, it was nearly im-
possible to construct systems requiring thousands or millions of active devices.

The appearance of the bipolar junction transistor in 1947 marked the beginning
of the solid-state revolution. These new devices were small, cheap, rugged, and reli-
able. Solid-state circuitry made possible the development of pocket transistor radios
and hearing aids, quartz watches and touch-tone phones, compact disc players and
personal computers.

A solid-state device consists of a crystal with regions of impurities incorporated
into its surface. These impurities modify the electrical properties of the crystal, al-
lowing it to amplify or modulate electrical signals. A working knowledge of device
physics is necessary to understand how this occurs. This chapter covers not only ele-
mentary device physics but also the operation of three of the most important solid-
state devices: the junction diode, the bipolar transistor, and the field-effect
transistor. Chapter 2 explains the manufacturing processes used to construct these
and other solid-state devices.

RJ SEMICONDUCTORS

The inside front cover of the book depicts a long-form periodic table. The elements
are arranged so those with similar properties group together to form rows and
columns. The elements on the left-hand side of the periodic table are called metals,
while those on the right-hand side are called nonmetals. Metals are usually good
conductors of heat and electricity. They are also malleable and display a character-
istic metallic luster. Nonmetals are poor conductors of heat and electricity, and
those that are solid are brittle and lack the shiny luster of metals. A few elements in
the middle of the periodic table, such as silicon and germanium, have electrical
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properties that lie midway between those of metals and nonmetals. These elements
are called semiconductors. The differences between metals, semiconductors, and
nonmetals result from differences in the electronic structure of their respective
atoms.

Every atom consists of a positively charged nucleus surrounded by a cloud of
electrons. The number of electrons in this cloud equals the number of protons in the
nucleus, which also equals the atomic number of the element. Therefore, a carbon
atom has six electrons, because carbon has an atomic number of six. These electrons
occupy a series of shells that are somewhat analogous to the layers of an onion. As
electrons are added, the shells fill in order from innermost outward. The outermost
or valence shell may remain unfilled. The electrons occupying this outermost shell
are called valence electrons. The number of valence electrons possessed by an ele-
ment determines most of its chemical and electronic properties.

Each row of the periodic table corresponds to the filling of one shell. The leftmost
element in the row has one valence electron, while the rightmost element has a full
valence shell. Atoms with filled valence shells possess a particularly favored config-
uration. Those with unfilled valence shells will trade or share electrons so that each
can claim a full shell. Electrostatic attraction forms a chemical bond between atoms
that trade or share electrons. Depending upon the strategy adopted to fill the va-
lence shell, one of three types of bonding will occur.

Metallic bonding occurs between atoms of metallic elements, such as sodium.
Consider a group of sodium atoms in close proximity. Each atom has one valence
electron orbiting around a filled inner shell. Imagine that the sodium atoms all dis-
card their valence electrons. The discarded electrons are still attracted to the posi-
tively charged sodium atoms, but, since each atom now has a full valence shell, none
accepts them. Figure 1.1A shows a simplified representation of a sodium crystal.
Electrostatic forces hold the sodium atoms in a regular lattice. The discarded va-
lence electrons wander freely through the resulting crystal. Sodium metal is an ex-
cellent electrical conductor due to the presence of numerous free electrons. These
same electrons are also responsible for the metallic luster of the element and its
high thermal conductivity. Other metals form similar crystal structures, all of which
are held together by metallic bonding between a sea of free valence electrons and a
rigid lattice of charged atomic cores.!

Ionic bonding occurs between atoms of metals and nonmetals. Consider a sodium
atom in close proximity to a chlorine atom. The sodium atom has one valence elec-
tron, while the chlorine atom is one electron short of a full valence shell. The sodium
atom can donate an electron to the chlorine atom, and by this means both can
achieve filled outer shells. After the exchange, the sodium atom has a net positive
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FIGURE 1.1 Simplified illustrations of various types of chemical bonding: a small part of
a metallically bonded sodium crystal (A), a small part of an ionically bonded
sodium chloride crystal (B), and a covalently bonded chlorine molecule ©).

! Some metals conduct by means of holes rather than electrons, but the general observations made here still apply.
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charge and the chlorine atom, a net negative charge. The two charged atoms (or ions)
attract one another. Solid sodium chloride thus consists of sodium and chlorine ions
arranged in a regular lattice, forming a crystal (Figure 1.1B). Crystalline sodium chlo-
ride is a poor conductor of electricity, since all of its electrons are held in the shells of
the various atoms.

Covalent bonding occurs between atoms of nonmetals. Consider two chlorine
atoms in close proximity. Each atom has only seven valence electrons, while each
needs eight to fill its valence shell. Suppose that each of the two atoms contributes
one valence electron to a common pair shared by both. Now each chlorine atom can
claim eight valence electrons: six of its own, plus the two shared electrons. The two
chlorine atoms link to form a molecule that is held together by the electron pair
shared between them (Figure 1.1C). The shared pair of electrons forms a covalent
bond. The lack of free valence electrons explains why nonmetallic elements do not
conduct electricity and why they lack metallic luster. Many nonmetals are gases at
room temperature because the electrically neutral molecules exhibit no strong at-
traction to one another and thus do not condense to form a liquid or a solid.

The atoms of a semiconductor also form covalent bonds. Consider atoms of sili-
con, a representative semiconductor. Each atom has four valence electrons and
needs four more to complete its valence shell. Two silicon atoms could theoretically
attempt to pool their valence electrons to achieve filled shells. In practice this does
not occur because eight electrons packed tightly together strongly repel one anoth-
er. Instead, each silicon atom shares one electron pair with each of four surrounding
atoms. In this way, the valence electrons are spread around to four separate loca-
tions and their mutual repulsion is minimized.

Figure 1.2 shows a simplified two-dimensional representation of a silicon crystal.
Each of the small circles represents a silicon atom. Each of the lines between the circles
represents a covalent bond consisting of a shared pair of valence electrons. Each silicon
atom can claim eight electrons (four shared electron pairs), so all of the atoms have full
valence shells. These atoms are linked together in a molecular network by the covalent
bonds formed between them. This infinite lattice represents the structure of the silicon
crystal. The entire crystal is literally a single molecule, so crystalline silicon is strong and
hard, and it melts at a very high temperature. Silicon is a poor conductor of electricity
because all of its valence electrons are used to form the crystal lattice.

A similar macromolecular crystal can theoretically be formed by any group-I'V
element,? including carbon, silicon, germanium, tin, and lead. Carbon, in the form of
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FIGURE 1.2 Simplified two-dimensional representation of a silicon crystal lattice.

2 The group-1I1,1V,V, and VI elements reside in columns I11-B, IV-B, V-B, and VI-B of the long-form periodic

table. The group-1I elements may fall into either columns II-A or {I-B. The A/B numbering system is a his-
torical curiosity and the International Union of Pure and Applied Chemists (IUPAC) has recommended its
abandonment: see J. Hudson, The History of Chemistry (New York: Chapman and Hall, 1992). pp. 122-137.
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diamond, has the strongest bonds of any group-IV element. Diamond crystals are
justly famed for their strength and hardness. Silicon and germanium have somewhat
weaker bonds due to the presence of filled inner shells that partially shield the va-
lence electrons from the nucleus. Tin and lead have weak bonds because of numerous
inner shells; they typically form metallically bonded crystals instead of covalently
bonded macromolecules. Of the group-1V elements, only silicon and germanium
have bonds of an intermediate degree of strength. These two elements act as true
semiconductors, while carbon is a nonmetal, and tin and lead are both metals.

1.1.1. Generation and Recombination

The electrical conductivity of group-IV elements increases with atomic number.
Carbon, in the form of diamond, is a true insulator. Silicon and germanium have
much higher conductivities, but these are still far less than those of metals such as tin
and lead. Because of their intermediate conductivities, silicon and germanium are
termed semiconductors.

Conduction implies the presence of free electrons. At least a few of the valence
electrons of a semiconductor must somehow escape the lattice to support conduc-
tion. Experiments do indeed detect small but measurable concentrations of free
electrons in pure silicon and germanium. The presence of these free electrons im-
plies that some mechanism provides the energy needed to break the covalent bonds.
The statistical theory of thermodynamics suggests that the source of this energy lies
in the random thermal vibrations that agitate the crystal lattice. Even though the
average thermal energy of an electron is relatively small (roughly 0.04 electron-volt
at 25°C), these energies are randomly distributed, and a few electrons possess much
larger energies. The energy required to free a valence electron from the crystal lat-
tice is called the bandgap energy. A material with a large bandgap energy possesses
strong covalent bonds and therefore contains few free electrons. Materials with
lower bandgap energies contain more free electrons and possess correspondingly
greater conductivities (Table 1.1).

TABLE 1.1 Selected properties

Atomic Melting Electrical Conductivity, Bandgap
Element Number Point, °C (Q - cm)?! Energy, eV
Carbon
(diamond) 6 3550 ~10716 52
Silicon 14 1410 4-107° 1.1
Germanium 32 937 0.02 0.7
White tin 50 232 9-10* 0.1

A vacancy occurs whenever an electron leaves the lattice. One of the atoms that
formerly possessed a full outer shell now lacks a valence electron and therefore has
a net positive charge. This situation is depicted in a simplified fashion in Figure 1.3.
The ionized atom can regain a full valence shell if it appropriates an electron from a
neighboring atom. This is easily accomplished since it still shares electrons with
three adjacent atoms. The electron vacancy is not eliminated; it merely shifts to the

3 Bandgap energies for Si, Ge: B. G. Streetman, Solid State Electronic Devices, 2d ed. (Englewood Cliffs, NJ:
Prentice-Hall, 1980), p. 443. Bandgap for C: N. B. Hanny, ed., Semiconductors (New York: Reinhold Publish-
ing, 1959), p. 52. Conductivity for Sn: R. C. Weast, ed., CRC Handbook of Chemistry and Physics,62d ed. (Boca
Raton, FL: CRC Press, 1981), pp. F135-F136. Other values computed. Melting points: Weast, pp. B4-B48.



