PEARSON B PINEHCR o5 ¥ 3B 2 AR SHA

OpenCL wmizEiE™

OpenCL Programming Guide

(% Chiv)

Aaftab Munshi Benedict R. Gaster
(%) Timothy G. Mattson James Fung &

Dan Ginsburg

= 4 & & K &

FEMFESHAKEES R

OpenCL 4R#235

(&R)

OpenCL Programming Gulde

Aaftab Munshi Benedict R. q,:,-,,\-

(%] Timothy G. Mattson James Fuigg
Dan Ginsburg

M 4 8 KB B
5| A

E=: 01-2012-1770
R E A
BT OpenCL frHEAT B+ 78 43 R H] CPU. GPU S5 ab PR A1) £ & Ui, (U 3k45 Apple. AMD,

Intel. IBM &4 HEIMINA], FEMRS A HRAUBER mrtERE vl 525 QUo7 el fR) B I i 55

A456 OpenCL M FRHARBUBIL RN BES , AR o S BT . AE 70 BT SR BT P S48 11
Heifi b, B8] T AT] OpenCL &R & FIFATE0L, JFHALHt 1 5¢ #4016 API Al OpenCL C 5
SR I SE R) SRR~ 8, UFR T 95 A FAT R i, SEIEAR S
AN B il LAE R, EN41T OpenCL BATEREOLAL I .

AN —AEIAS OpenCL 1.1 BG4« BUBHY B A 1, 3G A5 BRI AN
BRI AT B %
Original edition, entitled OPENCL PROGRAMMING GUIDE, 1E, 9780321749642 by MUNSHI,
AAFTAB; GASTER, BENEDICT; MATTSON, TIMOTHY G.:FUNG, JAMES; GINSBURG, DAN,
published by Pearson Education, Inc, publishing as Addison-Wesley Professional, Copyright © 2012
Pearson Education, Inc.
All rights reserved. No part of this book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording or by any information storage
retrieval system, without permission from Pearson Education, Inc.
China edition published by PEARSON EDUCATION ASIA LTD., and CHINA SCIENCE
PUBLISHING & MEDIA LTD.(SCIENCE PRESS) Copyright © 2012.
ARAA A o [EORR X (AL G, A il).
A A NG AT Pearson Education (52220 i AR HT) WOGBI P bR . AR E AR

B £k 4 B (CIP) 3R
OpenCL 2R : %3 / (F2) 24l (Munshi, A.) &%, — AR —Jb5t: Bl2EtRaL,
2012
(F oM BRLE SR AT - #41)
ISBN 978-7-03-034963-7
[. @O0 II. @ I OBEBKI-FF I8 V. (DTP391.41
HpE A B CIP A% (2012) 43 132813
AL 1T ¥/ FEFPHL: K fh/ HEEh: x4

#4 % 2 K BHR
JORABIRAL LT 1 0%
RIS = 100717
http: //www.sciencep.com

A4 AT R

Bleg AL AT S HFe DI 2e S
*
20127 A - K JFA: B5(720 X 1000)
2012 7 HE—IKENHI Mgk: 391/4
T 964 000
EM: 98.00 7T
CUnA B2 o i, 3R A 5 0)

Foreword

During the past few years, heterogeneous computers composed of CPUs
and GPUs have revolutionized computing. By matching different parts of
a workload to the most suitable processor, tremendous performance gains
have been achieved.

Much of this revolution has been driven by the emergence of many-core
processors such as GPUs. For example, it is now possible to buy a graphics
card that can execute more than a trillion floating point operations per
second (teraflops). These GPUs were designed to render beautiful images,
but for the right workloads, they can also be used as high-performance
computing engines for applications from scientific computing to aug-
mented reality.

A natural question is why these many-core processors are so fast com-
pared to traditional single core CPUs. The fundamental driving force is
innovative parallel hardware. Parallel computing is more efficient than
sequential computing because chips are fundamentally parallel. Modern
chips contain billions of transistors. Many-core processors organize these
transistors into many parallel processors consisting of hundreds of float-
ing point units. Another important reason for their speed advantage is
new parallel software. Utilizing all these computing resources requires
that we develop parallel programs. The efficiency gains due to software
and hardware allow us to get more FLOPs per Watt or per dollar than a
single-core CPU.

Computing systems are a symbiotic combination of hardware and soft-
ware. Hardware is not useful without a good programming model. The
success of CPUs has been tied to the success of their programming mod-
els, as exemplified by the C language and its successors. C nicely abstracts
a sequential computer. To fully exploit heterogeneous computers, we need

new programming models that nicely abstract a modern parallel computer.

And we can look to techniques established in graphics as a guide to the
new programming models we need for heterogeneous computing.

I have been interested in programming models for graphics for many
years. It started in 1988 when I was a software engineer at PIXAR, where
I developed the RenderMan shading language. A decade later graphics

xiii

xiv

systems became fast enough that we could consider developing shading
languages for GPUs. With Kekoa Proudfoot and Bill Mark, we developed

a real-time shading language, RTSL. RTSL ran on graphics hardware by
compiling shading language programs into pixel shader programs, the
assembly language for graphics hardware of the day. Bill Mark subse-
quently went to work at NVIDIA, where he developed Cg. More recently,

[have been working with Tim Foley at Intel, who has developed a new
shading language called Spark. Spark takes shading languages to the next
level by abstracting complex graphics pipelines with new capabilities such
as tesselation.

While developing these languages, I always knew that GPUs could be used
for much more than graphics. Several other groups had demonstrated that
graphics hardware could be used for applications beyond graphics. This
led to the GPGPU (General-Purpose GPU) movement. The demonstra-
tions were hacked together using the graphics library. For GPUs to be used
more widely, they needed a more general programming environment that
was not tied to graphics. To meet this need, we started the Brook for GPU
Project at Stanford. The basic idea behind Brook was to treat the GPU as

a data-parallel processor. Data-parallel programming has been extremely
successful for parallel computing, and with Brook we were able to show
that data-parallel programming primitives could be implemented on a
GPU. Brook made it possible for a developer to write an application in a
widely used parallel programming model.

Brook was built as a proof of concept. Ian Buck, a graduate student at
Stanford, went on to NVIDIA to develop CUDA. CUDA extended Brook in
important ways. It introduced the concept of cooperating thread arrays, or
thread blocks. A cooperating thread array captured the locality in a GPU
core, where a block of threads executing the same program could also
communicate through local memory and synchronize through barriers.
More importantly, CUDA created an environment for GPU Computing
that has enabled a rich ecosystem of application developers, middleware
providers, and vendors.

OpenCL (Open Computing Language) provides a logical extension of the
core ideas from GPU Computing—the era of ubiquitous heterogeneous
parallel computing. OpenCL has been carefully designed by the Khronos
Group with input from many vendors and software experts. OpenCL
benefits from the experience gained using CUDA in creating a software
standard that can be implemented by many vendors. OpenCL implemen-
tations run now on widely used hardware, including CPUs and GPUs from
NVIDIA, AMD, and Intel, as well as platforms based on DSPs and FPGAs.

Foreword

By standardizing the programming model, developers can count on more
software tools and hardware platformes.

What is most exciting about OpenClL is that it doesn’t only standardize
what has been done, but represents the efforts of an active community
that is pushing the frontier of parallel computing. For example, OpenCL
provides innovative capabilities for scheduling tasks on the GPU. The
developers of OpenCL have have combined the best features of task-
parallel and data-parallel computing. I expect future versions of OpenCL
to be equally innovative. Like its father, OpenGL, OpenCL will likely grow
over time with new versions with more and more capability.

This book describes the complete OpenCL Programming Model. One of
the coauthors, Aaftab, was the key mind behind the system. He has joined
forces with other key designers of OpenCL to write an accessible authorita-
tive guide. Welcome to the new world of heterogeneous computing.

—Pat Hanrahan
Stanford University

Foreword

XV

Preface

Industry pundits love drama. New products don’t build on the status quo
to make things better. They “revolutionize” or, better yet, define a “new
paradigm.” And, of course, given the way technology evolves, the results
rarely are as dramatic as the pundits make it seem.

Over the past decade, however, something revolutionary has happened.
The drama is real. CPUs with multiple cores have made parallel hardware
ubiquitous. GPUs are no longer just specialized graphics processors; they
are heavyweight compute engines. And their combination, the so-called
heterogeneous platform, truly is redefining the standard building blocks
of computing.

We appear to be midway through a revolution in computing on a par with
that seen with the birth of the PC. Or more precisely, we have the potential

for a revolution because the high levels of parallelism provided by hetero-

geneous hardware are meaningless without parallel software; and the fact

of the matter is that outside of specific niches, parallel software is rare.

To create a parallel software revolution that keeps pace with the ongoing
(parallel) heterogeneous computing revolution, we need a parallel soft-
ware industry. That industry, however, can flourish only if software can
move between platforms, both cross-vendor and cross-generational. The
solution is an industry standard for heterogeneous computing.

OpenCL is that industry standard. Created within the Khronos Group
(known for OpenGL and other standards), OpenCL emerged from a col-
laboration among software vendors, computer system designers (including
designers of mobile platforms), and microprocessor (embedded, accelera-
tor, CPU, and GPU) manufacturers. It is an answer to the question “How
can a person program a heterogeneous platform with the confidence that
software created today will be relevant tomorrow?”

Born in 2008, OpenCL is now available from multiple sources on a wide
range of platforms. It is evolving steadily to remain aligned with the latest
microprocessor developments. In this book we focus on OpenCL 1.1. We
describe the full scope of the standard with copious examples to explain
how OpenCL is used in practice. Join us. Vive la révolution.

xvii

xviii

Intended Audience

This book is written by programmers for programmers. It is a pragmatic
guide for people interested in writing code. We assume the reader is
comfortable with C and, for parts of the book, C++. Finally, we assume
the reader is familiar with the basic concepts of parallel programming.
We assume our readers have a computer nearby so they can write software
and explore ideas as they read. Hence, this book is overflowing with pro-
grams and fragments of code.

We cover the entire OpenCL 1.1 specification and explain how it can be
used to express a wide range of parallel algorithms. After finishing this
book, you will be able to write complex parallel programs that decom-
pose a workload across multiple devices in a heterogeneous platform. You
will understand the basics of performance optimization in OpenCL and
how to write software that probes the hardware and adapts to maximize
performance.

Organization of the Book

The OpenCL specification is almost 400 pages. It’s a dense and complex
document full of tediously specific details. Explaining this specification is
not easy, but we think that we’ve pulled it off nicely.

The book is divided into two parts. The first describes the OpenCL speci-
fication. It begins with two chapters to introduce the core ideas behind
OpenCL and the basics of writing an OpenCL program. We then launch
into a systematic exploration of the OpenCL 1.1 specification. The tone of
the book changes as we incorporate reference material with explanatory
discourse. The second part of the book provides a sequence of case stud-
ies. These range from simple pedagogical examples that provide insights
into how aspects of OpenCL work to complex applications showing how
OpenCL is used in serious application projects. The following provides
more detail to help you navigate through the book:

Part I: The OpenCL 1.1 Language and API

e Chapter 1, “An Introduction to OpenCL”: This chapter provides a
high-level overview of OpenCL. It begins by carefully explaining why
heterogeneous parallel platforms are destined to dominate comput-
ing into the foreseeable future. Then the core models and concepts
behind OpenCL are described. Along the way, the terminology used
in OpenCL is presented, making this chapter an important one to read

Preface

even if your goal is to skim through the book and use it as a reference
guide to OpenCL.

Chapter 2, “HelloWorld: An OpenCL Example”: Real programmers
learn by writing code. Therefore, we complete our introduction to
OpenCL with a chapter that explores a working OpenCL program.

It has become standard to introduce a programming language by
printing “hello world” to the screen. This makes no sense in OpenCL
(which doesn’t include a print statement). In the data-parallel pro-
gramming world, the analog to “hello world” is a program to complete
the element-wise addition of two arrays. That program is the core of
this chapter. By the end of the chapter, you will understand OpenCL
well enough to start writing your own simple programs. And we urge
you to do exactly that. You can’t learn a programming language by
reading a book alone. Write code.

Chapter 3, “Platforms, Contexts, and Devices”: With this chapter,
we begin our systematic exploration of the OpenCL specification.
Before an OpenCL program can do anything “interesting,” it needs
to discover available resources and then prepare them to do useful
work. In other words, a program must discover the platform, define
the context for the OpenCL program, and decide how to work with
the devices at its disposal. These important topics are explored in this
chapter, where the OpenCL Platform API is described in detail.

Chapter 4, “Programming with OpenCL C”: Code that runs on an
OpenCL device is in most cases written using the OpenCL C program-
ming language. Based on a subset of C99, the OpenCL C program-
ming language provides what a kernel needs to effectively exploit

an OpenCL device, including a rich set of vector instructions. This
chapter explains this programming language in detail.

Chapter 5, “OpenCL C Built-In Functions”: The OpenCL C program-
ming language API defines a large and complex set of built-in func-
tions. These are described in this chapter.

Chapter 6, “Programs and Kernels”: Once we have covered the lan-
guages used to write kernels, we move on to the runtime API defined
by OpenCL. We start with the process of creating programs and
kernels. Remember, the word program is overloaded by OpenCL. In
OpenCL, the word program refers specifically to the “dynamic library”
from which the functions are pulled for the kernels.

Chapter 7, “Buffers and Sub-Buffers”: In the next chapter we move
to the buffer memory objects, one-dimensional arrays, including
a careful discussion of sub-buffers. The latter is a new feature in

Preface

Xix

XX

OpenCL 1.1, so programmers experienced with OpenCL 1.0 will find
this chapter particularly useful.

Chapter 8, “Images and Samplers”: Next we move to the very
important topic of our other memory object, images. Given the close
relationship between graphics and OpenCL, these memory objects are
important for a large fraction of OpenCL programmers.

Chapter 9, “Events”: This chapter presents a detailed discussion of
the event model in OpenCL. These objects are used to enforce order-
ing constraints in OpenCL. At a basic level, events let you write con-
current code that generates correct answers regardless of how work is
scheduled by the runtime. At a more algorithmically profound level,
however, events support the construction of programs as directed acy-
clic graphs spanning multiple devices.

Chapter 10, “Interoperability with OpenGL”: Many applications
may seek to use graphics APIs to display the results of OpenCL pro-
cessing, or even use OpenCL to postprocess scenes generated by graph-
ics. The OpenCL specification allows interoperation with the OpenGL
graphics APL. This chapter will discuss how to set up OpenGL/OpenCL
sharing and how data can be shared and synchronized.

Chapter 11, “Interoperability with Direct3D”: The Microsoft fam-
ily of platforms is a common target for OpenCL applications. When
applications include graphics, they may need to connect to Microsoft’s
native graphics APL In OpenCL 1.1, we define how to connect an
OpenCL application to the DirectX 10 APL This chapter will demon-
strate how to set up OpenCL/Direct3D sharing and how data can be
shared and synchronized.

Chapter 12, “C++ Wrapper API”: We then discuss the OpenCL C++
API Wrapper. This greatly simplifies the host programs written in
C++, addressing automatic reference counting and a unified interface
for querying OpenCL object information. Once the C++ interface is
mastered, it’s hard to go back to the regular C interface.

Chapter 13, “OpenCL Embedded Profile”: OpenCL was created

for an unusually wide range of devices, with a reach extending from
cell phones to the nodes in a massively parallel supercomputer. Most
of the OpenCL specification applies without modification to each

of these devices. There are a small number of changes to OpenCL,
however, needed to fit the reduced capabilities of low-power proces-
sors used in embedded devices. This chapter describes these changes,
referred to in the OpenCL specification as the OpenCL embedded
profile.

Preface

Part II: OpenCL 1.1 Case Studies

Chapter 14, “Image Histogram”: A histogram reports the frequency
of occurrence of values within a data set. For example, in this chapter,
we compute the histogram for R, G, and B channel values of a color
image. To generate a histogram in parallel, you compute values over
local regions of a data set and then sum these local values to generate
the final result. The goal of this chapter is twofold: (1) we demonstrate
how to manipulate images in OpenCL, and (2) we explore techniques
to efficiently carry out a histogram’s global summation within an
OpenCL program.

Chapter 15, “Sobel Edge Detection Filter”: The Sobel edge filter is a
directional edge detector filter that computes image gradients along
the x- and y-axes. In this chapter, we use a kernel to apply the Sobel
edge filter as a simple example of how kernels work with images in
OpenCL.

Chapter 16, “Parallelizing Dijkstra’s Single-Source Shortest-Path
Graph Algorithm”: In this chapter, we present an implementation of
Dijkstra’s Single-Source Shortest-Path graph algorithm implemented
in OpenCL capable of utilizing both CPU and multiple GPU devices.
Graph data structures find their way into many problems, from artifi-
cial intelligence to neuroimaging. This particular implementation was
developed as part of FreeSurfer, a neuroimaging application, in order
to improve the performance of an algorithm that measures the curva-
ture of a triangle mesh structural reconstruction of the cortical surface
of the brain. This example is illustrative of how to work with multiple
OpenCL devices and split workloads across CPUs, multiple GPUs, or
all devices at once.

Chapter 17, “Cloth Simulation in the Bullet Physics SDK”: Phys-
ics simulation is a growing addition to modern video games, and in
this chapter we present an approach to simulating cloth, such as a
warrior’s clothing, using OpenCL that is part of the Bullet Physics
SDK. There are many ways of simulating soft bodies; the simulation
method used in Bullet is similar to a mass/spring model and is opti-
mized for execution on modern GPUs while integrating smoothly
with other Bullet SDK components that are not written in OpenCL.
We show an important technique, called batching, that transforms
the particle meshes for performant execution on wide SIMD archi-
tectures, such as the GPU, while preserving dependences within the
mass/spring model.

Preface

XXi

xxii

Chapter 18, “Simulating the Ocean with Fast Fourier Transform”:
In this chapter we present the details of AMD’s Ocean simulation.
Ocean is an OpenCL demonstration that uses an inverse discrete
Fourier transform to simulate, in real time, the sea. The fast Fou-

rier transform is applied to random noise, generated over time as a
frequency-dependent phase shift. We describe an implementation
based on the approach originally developed by Jerry Tessendorf that
has appeared in a number of feature films, including Waterworld,
Titanic, and Fifth Element. We show the development of an optimized
2D DFFT, including a number of important optimizations useful when
programming with OpenCL, and the integration of this algorithm
into the application itself and using interoperability between OpenCL
and OpenGL.

Chapter 19, “Optical Flow”: In this chapter, we present an imple-
mentation of optical flow in OpenCL, which is a fundamental concept
in computer vision that describes motion in images. Optical flow has
uses in image stabilization, temporal upsampling, and as an input to
higher-level algorithms such as object tracking and gesture recogni-
tion. This chapter presents the pyramidal Lucas-Kanade optical flow
algorithm in OpenCL. The implementation demonstrates how image
objects can be used to access texture features of GPU hardware. We
will show how the texture-filtering hardware on the GPU can be used
to perform linear interpolation of data, achieve the required sub-pixel
accuracy, and thereby provide significant speedups. Additionally,

we will discuss how shared memory can be used to cache data that

is repeatedly accessed and how early kernel exit techniques provide
additional efficiency.

Chapter 20, “Using OpenCL with PyOpenCL”: The purpose of this
chapter is to introduce you to the basics of working with OpenCL in
Python. The majority of the book focuses on using OpenCL from
C/C++, but bindings are available for other languages including
Python. In this chapter, PyOpenCL is introduced by walking through
the steps required to port the Gaussian image-filtering example from
Chapter 8 to Python. In addition to covering the changes required to
port from C++ to Python, the chapter discusses some of the advan-
tages of using OpenCL in a dynamically typed language such as
Python.

Chapter 21, “Matrix Multiplication with OpenCL”: In this chapter,
we discuss a program that multiplies two square matrices. The pro-
gram is very simple, so it is easy to follow the changes made to the
program as we optimize its performance. These optimizations focus

Preface

on the OpenCL memory model and how we can work with the model
to minimize the cost of data movement in an OpenCL program.

Chapter 22, “Sparse Matrix-Vector Multiplication”: In this chapter,
we describe an optimized implementation of the Sparse Matrix-Vector
Multiplication algorithm using OpenCL. Sparse matrices are defined
as large, two-dimensional matrices in which the vast majority of the
elements of the matrix are equal to zero. They are used to characterize
and solve problems in a wide variety of domains such as computa-
tional fluid dynamics, computer graphics/vision, robotics/kinematics,
financial modeling, acoustics, and quantum chemistry. The imple-
mentation demonstrates OpenCL'’s ability to bridge the gap between
hardware-specific code (fast, but not portable) and single-source

code (very portable, but slow), yielding a high-performance, efficient
implementation on a variety of hardware that is almost as fast as a
hardware-specific implementation. These results are accomplished
with kernels written in OpenCL C that can be compiled and run on
any conforming OpenCL platform.

Appendix

Appendix A, “Summary of OpenCL 1.1”: The OpenCL specification
defines an overwhelming collection of functions, named constants,
and types. Even expert OpenCL programmers need to look up these
details when writing code. To aid in this process, we’ve included an
appendix where we pull together all these details in one place.

Example Code

This book is filled with example programs. You can download many of
the examples from the book’s Web site at www.openclprogrammingguide.
com.

Errata

If you find something in the book that you believe is in error, please send
us a note at errors@opencl-book.com. The list of errata for the book can
be found on the book’s Web site at www.openclprogrammingguide.com.

Preface

xxiii

Contents

FOTBWOTH. < i.c s oo isisiniis s 5.5 i o016 60 w5 6w e 8 4 0 65805 w1 8.0 8 0 0 xiii
T (ol I R S S A I 0 Bl e L B B PO o B e S A N L Xvii
Partl| The OpenCL 1.1 Languageand APl 1
1. AnintroductiontoOpenCL 3
What Is OpenCL, or . .. Why You Need This Book 3
Our Many-Core Future: Heterogeneous Platforms 4
Software ina Many-Core World 7
Conceptual Foundationsof OpenCL 11
Platform Model 12
Execution MOTeEl. . v v vssconeesissensnonssssmesosnon 13
Memoty MOAEL ¢ s csss s 55 vsossasssssisannnmuonsssssssss 21
Programming Models : : c c s s cias::3cs nnvmmenpnsnansmes 24
OpenCL and Graphics. 29
The Contents 0Of OPenCL ., .. v c0e e v memvmammnmamoee s 30
PIAOEMAPL .« :c: o5 vcocsrerssnssnnoansmassnnsmssnsssss 31
RUNBME APL = 25 02555555753 585 unmmmamssasnsssessdnes 31

Kernel Programming Language 32
OpenCL SUMIMALY . . . -« - ¢« o etermoiomos oimiim oo aries o o0 ooy o105 i 5 34

The Embedded Profile. 35
Leatfiing OPENCL: ¢ ¢ ¢ ¢« s o5 oo vumnes s s ws wmes s mme s seass e os - 36

iv

2. HelloWorld: AnOpenCLExamplecuuimemneennnnnnn. 39

Building the Examples. 40
PreTOQUESTEES, o 1o s inw i s 5 €16 65 5 66 555 555885855855 a5 a simomn 40
Mac OS X and Code::Blocks 41
Microsoft Windows and Visual Studio. 42
Linux and Eclipse 44

HelloWorld Example v cvvvvavnrsssssssassrmosnnnmsnss 45
Choosing an OpenCL Platform and Creating a Context. 49
Choosing a Device and Creating a Command-Queue. 50
Creating and Building a Program Object. 52
Creating Kernel and Memory Objects 54
Exgcuting.a Kermel . . o005 355 smanpeeemmessssims gy 55

Checking for Errors il OpeniCL ;o .z s v crmmssmenasasseensms 57

Platforms, Contexts,andDevicesciiiiiennnnn. 63

O LT EYAFTH0 T 0 o 0 0 0 0 0 0 £ 0 4 8300 3 05 D £ D 8 T 63

OPEACL DEVICES : ;. .o v v 665 55 5 5 o o0mnionm e s s o0 o e e m e s i wom o 68

OpenCl COMTEXES . , . . - 5« 55 5 5 o os0m0n 85 w5005 w0 w05 56 @888 3 55 09 9 83

Programming withOpenCLC, 97

Writing a Data-Parallel Kernel Using OpenCLC 97

Scalat Tata TS » » « o m o ois 0o o065 55500 505 505 15 s 5.8 £ 6 & £ 5 8 88 5 8 99
The HalE Datad TYDE « . o onie woie omiocmmmmnmmees mes s diiis 101

Vect Ol ataily 11 S e g T 102
VeCtor ILItELAlS . o wmowwimsoim s s omme ssis e s s miers vow o o v o wne s 104
VECtor COMIPOMEIIES:. : ¢ 55 i = 56 w0 0 608 &5 Hs 808 55 828888055583 106

Other Data TRPES . v v v o o w koo inmin 666 w6 5 48 6% 5 555223353334 108

DDETIVEA THIDES! . w1020 1011 k0 1o m n w0 e o s a e 6 s w3 109

Hmplicit Type CONVEISIONS. o« n s visimmssnescesesssassonmes 110
Usual Arithietic CONVETSIONS e s scvzusvissssssssnmpves 114

EXPUCTE CASES . o . v rinonimomin e 55 5 5 65 585883 5 5 5 5 bR 6 S HSS 116

EXplicit CONVELSIONS . o« v vvve s iientneenoorsaboomssssanns 117

Reinterpreting Data as Another Type 121

VECTOE OPETALOTS. s 5 s 6 ¢+ 5 5 5558 5 020888 % eomoimimiuimsme o iona 123
Arithmetic Operators:ccvmmmmmsovnaneoscceenas 124
Relational and Equality Operators 127

Contents

Bitwise Operators 127

Logical Operatorsiiiiiinininanan... 128
Conditional Operator 129
ST OPRTBYOLS: 052055500 3109 50 3 10 0300 0 1 s 365 6 129
URATY OPETALOTS « « s o s o sms 355 5 56 5 5 655 55 508 68 0000 131
Assignment Operatorttt 132
Qualifiers. e 133
Function Qualifiers. 133
Kernel Attribute Qualifiers 134
Address Space QUAlITIers . . <« s sswm s mwsssnsmen s swmessss o 135
Access Qualifiers 140
Ty P QUALITIOES e e mt s e o o115 6 s s v vt o 141
KEYWOTAS! 2. 550 m06 0150 50051 5155 095 5606 050 0 006 5 L 55 141
Preprocessor Directivesand Macros 141
Pragma Directives i i 143
IV ECTIB L i o ires oo o o oottt o o twlieH sl e ettty okt (o e ok s ek S e e 145
RESETICHIOTIR] 1 w5t 0 i 550 0 0 o 0 6 0 o 5 s 0 605, 68 8 6 8 6 8 8 146
OpenCLCBuilt-inFunctionso, 149
Work-Item Functions. i 150
Math BUDICHONS « = e 5 0@ 0 5050810500 10 6 5 50186 87506 8 £'5 8 58 5 55 6808 8o 153
Floating-Point Pragmas . «v.scsicscicssssssnsossassonss 162
Floating-Point Constants 162
Relative BETOT S WIS v vu o v v ovnonaenensoenansnns 163
ITtEEr FUNCHIONS - i cis s omisisim s s iwsim 6 56 25 80 8 68 s asbasasasessss 168
Common PUNCHONS, v.wwwssasws s iscsssssssessssssasisins 172
Geometric Functions.coov v v o iionnenncossiasissssisisas 175
Relational Functions 175
Vector Data Load and Store Functions 181
Syfichronization FUNCEONS: « .5, :5 5552522555565 snmsmnnrnes 190
Async Copy and Prefetch Functions. 191
AtomicFunctionsccotreiitncrcrcanasisieees 195
Miscellanieous Vector FUBICHONS .. . oz v cvvvsmecmoevonnemmons 199
Image Read and Write Functions 201
Reading from.an IMAZE. ..« ccxsumanmesesmanms s man s swwngns 201
SAIPIELS . .« v e mioreia o oimias o mm orma nm om 0050 950500 68 6 9 206
Determining the Border Color 209

Contents

vi

WrIng tO 8R IIIAEE « o cvw cmismmmon s s ss 5565555 annnnnann 210

Querying Image Information 214

6. ProgramsandKernelst 217
Program and Kernel Object Overview 217
Program ODJECS w uw e smsmniomeam s 6558 6 0§ 86 6558528 8886dsss 218
Creating and Building Programs 218
Program Build Options. 222,
Creating Programs from Binaries 227
Managing and Querying Programs 236
KETe] ODJECES v b0 5 v 64 55886 ssnisssiisssssssesstsinsss 237
Creating Kernel Objects and Setting Kernel Arguments 237
Thread Safety. 241
Managing and Querying Kernels i, 242
Buffers and Sub-Buffers............... ... i 247
Memory Obijects, Buffers, and Sub-Buffers Overview. 247
Creating Buffers and Sub-Buffers 249
Querying Buffers and Sub-Buffers. cxcovvmmviamnenacns 257
Reading, Writing, and Copying Buffers and Sub-Buffers......... 259
Mapping Buffers and Sub-Buffers 276
Imagesand Samplersccxvveriietnenvaereacnatnsnaons 281
Image and Sampler Object Overview 281
Creating Image ODJECES v v cvmemmn s 3550555 0 6 50060 0 k6 283
IIAEE FOTIMALE . « & « o« viur mim o s mscos o o i s mome w1 om0 33 287
Querying for Image SUPPOLE . .« coounnee oammn smwniwsomme s 291
Creating Sampler ODJECES vcvvomsunmm s o5 om s wm e s wms s 292
OpenCL C Functions for Working with Images 295
Transferring Image Objects. oo, 299
EVEILS & 56 ¢ ¢ smmensvnss s s simmusenune s s vommmmmessns s cbsdss 309
Commands, Queues, and Events Overview 309
Events and Command-Queuesovvennneee.. . 311
BVt OD]OCES v s g wmmmwioma s o v ocsemmnnnaner s EEEFETia5aa04 317

Contents

