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Preface

The book at hand has its origins in and reflects the structure of a course
that I have given regularly over the years at the University of Texas. The
course in question is an undergraduate honors course in complex analysis.
Its subscribers are for the most part math and physics majors, but a smat-
tering of engineering students, those interested in a more substantial and
more theoretically oriented introduction to the subject than our normal
undergraduate complex variables course offers, can usually be found in the
class. My approach to the course has been from its inception to teach it in
everything save scope like a beginning graduate course in complex function
theory. (To be honest, I have included some material in the book that I
do not ordinarily cover in the course, this with the admitted purpose of
making the book a suitable text for a first course in complex analysis at
the graduate level.) Thus, the tone of the course is quite rigorous, while its
pace is rather deliberate. Faced with a clientele that is bright, but math-
ematically less sophisticated than, say, a class of mathematics graduate
students would be, I considered it imperative to give students access to a
complete written record of the goings-on in my lectures, one containing full
details of proofs that I might only sketch in class, the accent there being
on the central idea involved in an argument rather than on the nitty-gritty
technicalities of the proof. I also deemed it wise to provide the students
with a generous supply of worked-out examples appropriate to the lecture
material. Since none of the textbooks available when I started teaching the
course had exactly the emphasis I was looking for, I began to compile my
own set of lecture notes. It is these notes that have evolved into the present
book.

In rough terms the course I have been describing comprises Chapters I,
III, IV, V, VII, and VIII of the book, together with the first three sections
of Chapter IX. Chapter II, a resume of information from plane topology, is
a reference chapter. It would never occur to me — nor would I recommend
to anyone else — to go systematically through this chapter in teaching a
complex variables course. Instead, the ideas from Chapter II get dispersed
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throughout my lectures, each topological notion being brought up as it
becomes germane to the development of complex function theory. While
this system works fine in the setting of a lecture, I find it disruptive to the
ongoing narrative of a book. Therefore, just as other authors have done
before me, I have chosen to assemble all the background material from
elementary topology in a single place for ease of reference. Chapters VI and
X, and with them the last two sections of Chapter IX, furnish “enrichment
topics” to those who wish to proceed slightly beyond the essential core of
basic complex analysis. The subject matter in Chapters VI and X would,
I think, be regarded as standard in most beginning graduate courses.

Located at the end of each chapter is a collection of exercises. Though
some of these are intended to foster the development of the computational
skills pertinent to complex analysis, most have a pronounced theoretical
flavor to them, in keeping with the course for which they were designed.
Many of the “classic” exercises in function theory turn up among these
problems. Quite a few of the exercises, on the other hand, are original to
this book (or they are, at least, to the best of my knowledge).

It is high time that I expressed my gratitude to everyone who has
had a hand in the creation of this book. These individuals include a num-
ber of graduate students at Texas — Michael Pearson, Michael Westmore-
land, and Edward Burger are three that spring immediately to mind —
who carefully read through early versions of the manuscript, helped rid it
of numerous errors, and, most importantly, identified places that from a
student’s perspective were badly in need of change. I am grateful to col-
leagues (in particular, to Barbara Flinn and Jean McKemie) who agreed
to “field test” portions of the manuscript in their own classes. Their input
has greatly improved the finished product. My special thanks go to Aimo
Hinkkanen, with whom I’ve had many useful conversations during the final
stages of preparation of the book and who has been an invaluable source
of suggestions for problems. This book would have remained a pipedream
were it not for the diligent efforts of Suzy Crumley, who typed it, and Buff
Miner, who did the graphics and generally oversaw the production of the
manuscript. Both patiently bore the brunt of my revisionist tendencies.
Needless to say, they share none of the blame for the inevitable errors that
have crept into the text and managed to escape detection under my proof-
reading. The editorial staff at Springer-Verlag (notably, Rob Torop and his
successor, Ulrike Schmickler-Hirzebruch) have been extremely helpful and
understanding. Above all, I appreciate the fact that they did not pressure
me with deadlines during my stint as graduate advisor, when my literary
output slowed to a trickle. A “tusen tack” goes to the Mittag-Leffler In-
stitute in Djursholm, Sweden, where some finishing touchgs were applied
to the manuscript in the course of my stay there during the academic year
1989-90 (and where Kari Hag and David Herron obliged with some greatly
valued proofreading). My teacher, Fred Gehring, has been a source of both
inspiration and encouragement for the undertaking. Finally, I would like to
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acknowledge the support of my wife, Mary Ann, and my sons, Kevin and
Sean. Despite being innocent bystanders, they were often in perfect posi-
tion to catch the flak of my frustration when things did not go as planned
with this project. To them I say: the struggle is over and dad is a happy
camper again.
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