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Preface

An apprentice carpenter may want only a hammer and a saw, but a master crafts-
man employs many precision tools. Computer programming likewise requires so-
phisticated tools to cope with the complexity of real applications, and only practice
with these tools will build skill in their use. This book treats structured problem
solving, data abstraction, software engineering principles, and the comparative
analysis of algorithms as fundamental tools of program design. Several case stud-
ies of substantial size are worked out in detail, to show how all the tools are used
together to build complete programs.

Many of the algorithms and data structures we study possess an intrinsic el-
egance, a simplicity that cloaks the range and power of their applicability. Before
long the student discovers that vast improvements can be made over the naive
methods usually used in introductory courses. Yet this elegance of method is tem-
pered with uncertainty. The student soon finds that it can be far from obvious which
of several approaches will prove best in particular applications. Hence comes an
early opportunity to introduce truly difficult problems of both intrinsic interest and
practical importance and to exhibit the applicability of mathematical methods to
algorithm verification and analysis.

Many students find difficulty in translating abstract ideas into practice. This
book, therefore, takes special care in the formulation of ideas into algorithms and in
the refinement of algorithms into concrete programs that can be applied to practical
problems. The process of data specification and abstraction, similarly, comes before
the selection of data structures and their implementations.

We believe in progressing from the concrete to the abstract, in the careful de-
velopment of motivating examples, followed by the presentation of ideas in a more
general form. At an early stage of their careers most students need reinforcement
from seeing the immediate application of the ideas that they study, and they require
the practice of writing and running programs to illustrate each important concept
that they learn. This book therefore contains many sample programs, both short
functions and complete programs of substantial length. The exercises and pro-
gramming projects, moreover, constitute an indispensable part of the book. Many
of these are immediate applications of the topic under study, often requesting that
programs be written and run, so that algorithms may be tested and compared.
Some are larger projects, and a few are suitable for use by a small group of students
working together.

1X
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By working through the first large project (CoNwAY’s game of Life), Chapter 1
expounds principles of top-down refinement, program design, review, and test-
ing, principles that the student will see demonstrated and is expected to follow
throughout the sequel. At the same time, this project provides an opportunity for
the student to review the syntax of C, the programming language used throughout
the book.

Chapter 2 introduces a few of the basic concerns of software engineering, in-
cluding problem specification and analysis, prototyping, data abstraction, algo-
rithm design, refinement, verification, and analysis. The chapter applies these
principles to the development of a second program for the Life game, one based on
an algorithm that is sufficiently subtle as to show the need for precise specifications
and verification, and one that shows why care must be taken in the choice of data
structures.

Chapter 3 continues to elucidate data abstraction and algorithm design by
studying stacks as an abstract data type, recursion as a problem-solving method,
and the intimate connections among stacks, recursion, and certain trees.

Queues and lists are the central topics of the next two chapters. The chapters ex-
pound several different implementations of each abstract data type, develop large
application programs showing the relative advantages of different implementa-
tions, and introduce algorithm analysis in a very informal way. A major goal of
these chapters is to bring the student to appreciate data abstraction and to apply
methods of top-down design to data as well as to algorithms.

Chapters 6, 7, and 8 present algorithms for searching, sorting, and table access
(including hashing). These chapters illustrate the interplay between algorithms
and the associated abstract data types, data structures, and implementations. The
text introduces the “big O” notation for elementary algorithm analysis and high-
lights the crucial choices to be made regarding best use of space, time, and pro-
gramming effort.

These choices require that we find analytical methods to assess algorithms,
and producing such analyses is a battle for which combinatorial mathematics must
provide the arsenal. At an elementary level we can expect students neither to be
well armed nor to possess the mathematical maturity needed to hone their skills
to perfection. Our goal, therefore, is to help students recognize the importance of
such skills in anticipation of later chances to study mathematics.

Binary trees are surely among the most elegant and useful of data structures.
Their study, which occupies Chapter 9, ties together concepts from lists, searching,
and sorting. As recursively defined data structures, binary trees afford an excellent
opportunity for the student to become comfortable with recursion applied both to
data structures and algorithms. The chapter begins with elementary topics and
progresses as far as splay trees and amortized algorithm analysis.

Chapter 10 continues the study of more sophisticated data structures, including
tries, B-trees, and red-black trees. The next chapter introduces graphs as more
general structures useful for problem solving.

The case study in Chapter 12 examines the Polish notation in considerable
detail, exploring the interplay of recursion, trees, and stacks as vehicles for problem
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solving and algorithm development. Some of the questions addressed can serve
as an informal introduction to compiler design.. As usual, the algorithms are fully
developed within a functioning C program. This program accepts as input an
expression in ordinary (infix) form, translates the expression into postfix form, and
evaluates the expression for specified values of the variable(s).

The appendices discuss several topics that are not properly part of the book’s
subject but that are often missing from the student’s preparation.

Appendix A presents several topics from discrete mathematics. Its final two
sections, on Fibonacci and Catalan numbers, are more advanced and not needed for
any vital purpose in the text, but are included to encourage combinatorial interest
in the more mathematically inclined.

Removal of recursion is a topic that most programmers should no longer need
to study. But at present some important work must still be done in contexts (like
FORTRAN or CosoL) disallowing recursion. Methods for manual recursion removal
are therefore sometimes required, and are collected for reference as Appendix B.
Some instructors will wish to include the study of threaded binary trees with Chap-
ter 9; this section is therefore written so that it can be read independently of the
remainder of Appendix B.

Appendix C, finally, is a brief introduction to the C programming language.
This is not a thorough treatment of the language, but it is intended to serve as a
review of C syntax and as a reference for the student.

In this edition, the entire text has been carefully reviewed and revised to update
its presentation and to reflect the ideas of many readers who have communicated
their experiences in studying the book. The principal changes are summarized as
follows.

m All the programs have been rewritten, revised, and polished to emphasize data
abstraction, to develop and employ reusable code, and to strengthen uniformity
and elegance of style.

» The documentation has been strengthened by including informal specifications
(pre- and postconditions) with all subprograms.

m Recursion is treated much earlier in the text and then emphasized by repeated
use thereafter.

m The coverage of more advanced, modern topics has been extended by the
inclusion of several new sections, including splay trees, red-black trees, and
amortized algorithm analysis.

m The text highlights new case studies, such as the miniature text editor in Chap-
ter 5.

s New exercises and programming projects have been added, including contin-
uing projects on information retrieval that request the student to compare the
performance of several different data structures and algorithms.
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a The material on graph theory and graph algorithms has now been collected as
a separate chapter.

m T©he treatment of lists has been streamlined.

a The source code for all the programs and program extracts printed in the book
will be available on the internet. To reach this software under ftp, log in as
user anonymous on the ftp site prenhall.com and change to the directory

pub/esm/computer_science.s-041/kruse/dspdc2

@ Instructors teaching from this book may obtain, at no charge, the Instructor’s
Resource Manual, which includes:

Brief teaching notes on each chapter;
Full solutions to all exercises in the textbook;
Transparency masters;

A PC disk containing both the software mentioned previously and the full
source code for all programming projects from the textbook.

Course Structure e R

prerequisite

content

The prerequisite for this book is a first course in programming, with experience us-
ing the elementary features of C. Appendix C presents several advanced aspects of
C programming that are often omitted from introductory courses. A good knowl-
edge of high school mathematics will suffice for almost all the algorithm analyses,
but further (perhaps concurrent) preparation in discrete mathematics will prove
valuable. Appendix A reviews all required mathematics.

This book is intended for courses such as the ACM Course CS2 (Program Design
and Implementation), ACM Course CS7 (Data Structures and Algorithm Analysis), or
a course combining these. Thorough coverage is given to most of the ACM/IEEE
knowledge units! on data structures and algorithms. These include:

AL1 Basic data structures, such as arrays, tables, stacks, queues, trees, and graphs;
AL2 Abstract data types;
AL3 Recursion and recursive algorithms;
AL4 Complexity analysis using the big O notation;
AL6 Sorting and searching; and
AL8 Practical problem-solving strategies, with large case studies.
The three most advanced knowledge units, AL5 (complexity classes, NP-complete
problems), AL7 (computability and undecidability), and AL9 (parallel and dis-
tributed algorithms) are not treated in this book.

Most chapters of this book are structured so that the core topics are presented

first, followed by examples, applications, and larger case studies. Hence, if time
allows only a brief study of a topic, it is possible, with no loss of continuity, to move

T See Computing Curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum Task Force, ACM
Press, New York, 1990.
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rapidly from chapter to chapter covering only the core topics. When time permits,
however, both students and instructor will enjoy the occasional excursion into the
supplementary topics and worked-out projects.

A two-term course can cover nearly the entire book, thereby attaining a satis-
fying integration of many topics from the areas of problem solving, data structures,
program development, and algorithm analysis. Students need time and practice to
understand general methods. By combining the studies of data abstraction, data
structures, and algorithms with their implementations in projects of realistic size,
an integrated course can build a solid foundation on which, later, more theoretical
courses can be built.

Even if this book is not covered in its entirety, it will provide enough depth to
enable interested students to continue using it as a reference in later work. It is
important in any case to assign major programming projects and to allow adequate
time for their completion.

This book and its supplements were written and produced with the first author’s
software called PreTgX, a preprocessor and macro package for the TgX typesetting
system.? PrelgX, by exploiting context dependency, automatically supplies much
of the typesetting markup required by TgX. PreIEX also supplies several tools useful
to the author, such as a powerful cross-reference system, greatly simplified typeset-
ting of mathematics and computer-program listings, and automatic generation of
the index and table of contents, while allowing the processing of the book in conve-
niently small files at every stage. Solutions, placed with exercises and projects, are
automatically removed from the text and placed in a separate manual. In conjunc-
tion with the PosTSCRIPT page-description language, PreTgX provides convenient
facilities for color separation, halftone screens, and other special results.

For a book such as this, PreIEX’s treatment of computer programs is its most
important feature. Computer programs are not included with the main body of the
text; instead, they are placed in separate, secondary files, along with any desired
explanatory text, and with any desired typesetting markup in place. By placing
tags at appropriate places in the secondary files, PrelgX can extract arbitrary parts
of a secondary file, in any desired order, for typesetting with the text. Another
utility (called StripTEX) can be used on the same file to remove all the tags, text, and
markup, with output that is a program ready to be compiled. The same input file
thus automatically produces both typeset program listings and compiled program
code. In this way, the reader gains increased confidence in the accuracy of the
computer program listings appearing in the text.

For this edition, all the diagrams and artwork have been produced as POSTSCRIPT
code in Adobe Illustrator. This allows the automatic inclusion of all figures in the
preliminary drafts of the manuscript and shortens the final stages of production
by removing any need for manual processing of camera copy.

2 TpX was developed by DONALD E. KNUTH, who has also made many important contributions to
our knowledge of data structures and algorithms. (See the entries under his name in the index.)
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problems of large
programs

purpose of book

problem specification

program design

The greatest difficulties of writing large computer programs are not in deciding
what the goals of the program should be, nor even in finding methods that can
be used to reach these goals. The president of a business might say, “Let’s get a
computer to keep track of all our inventory information, accounting records, and
personnel files, and let it tell us when inventories need to be reordered and budget
lines are overspent, and let it handle the payroll.” With enough time and effort, a
staff of systems analysts and programmers might be able to determine how various
staff members are now doing these tasks and write programs to do the work in the
same way.

This approach, however, is almost certain to be a disastrous failure. While
interviewing employees, the systems analysts will find some tasks that can be put
on the computer easily and will proceed to do so. Then, as they move other work
to the computer, they will find that it depends on the first tasks. The output from
these, unfortunately, will not be quite in the proper form. Hence they need more
programming to convert the data from the form given for one task to the form
needed for another. The programming project begins to resemble a patchwork
quilt. Some of the pieces are stronger, some weaker. Some of the pieces are carefully
sewn onto the adjacent ones, some are barely tacked together. If the programmers
are lucky, their creation may hold together well enough to do most of the routine
work most of the time. But if any change must be made, it will have unpredictable
consequences throughout the system. Later, a new request will come along, or an
unexpected problem, perhaps even an emergency, and the programmers’ efforts
will prove as effective as using a patchwork quilt as a safety net for people jumping
from a tall building,.

The main purpose of this book is to describe programming methods and tools
that will prove effective for projects of realistic size, programs much larger than
those ordinarily used to illustrate features of elementary programming. Since a
piecemeal approach to large problems is doomed to fail, we must first of all adopt
a consistent, unified, and logical approach, and we must also be careful to observe
important principles of program design, principles that are sometimes ignored in
writing small programs, but whose neglect will prove disastrous for large projects.

The first major hurdle in attacking a large problem is deciding exactly what
the problem is. It is necessary to translate vague goals, contradictory requests,
and perhaps unstated desires into a precisely formulated project that can be pro-
grammed. And the methods or divisions of work that people have previously used
are not necessarily the best for use in a machine. Hence our approach must be to
determine overall goals, but precise ones, and then slowly divide the work into
smaller problems until they become of manageable size.

The maxim that many programmers observe, “First make your program work,
then make it pretty,” may be effective for small programs, but not for large ones.
Each part of a large program must be well organized, clearly written, and thor-
oughly understood, or else its structure will have been forgotten, and it can no
longer be tied o the other parts of the project at some much later time, perhaps by
another programmer. Hence we do not separate style from other parts of program
design, but from the beginning we must be careful to form good habits.



