ENEERESRERERE BRI

Data Structures &

Program Design in C
(Second Edition)

9% iﬁi‘l"
MACIES (% M)

Robert Kruse/C. L. Tondo/Bruce Leung #

(SICREDAR)

EME EMFERAZHEE S R T

HIREMAmE T — N CES

(& SUREPIR)

(% =)
Data Structures & Program Design in C
(Second Edition)

Robert Kruse C.L.Tondo Bruce Leung #

4 F % K&
ST

E=: 01-2012-5333
A& BT

AATLL CH o T 5, RGN B S5 I T RN BRIV 7k« BT R S0 5N S, 480 45 2 9o U s
A, RETEJE U SR ER R BE Y A 2, S ACAT 52 20 R, LR B0 (1) 4 ST R R R (R Ve R . A, R
Ja AT RN YA TR K 322 BORL, A7 R 152 AR A T A0 s AR . 41 I v T J B S S, o9 2
WV, IFRCA KR SRS B 5 eh AT S AE VST I AT, FRR R o T B AN I TERR, 7R T & E AR AT
T2 1 S TR G P AL AR

AR AT A Ay o 25 2 A o SRR DR 2 A Ok, TRl Bk M HSEHLR T I TR R A 2 %
Original edition, entitled Data Structures & Program Design in C,2E 9780132883665 by Robert Kruse, published by Pearson
Education, Inc, publishing as Pearson, Copyright ©1997 by Pearson Education, Inc.
All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage retrieval system, without permission from Pearson Education,
Inc.
China edition published by PEARSON EDUCATION ASIA LTD., and CHINA SCIENCE PUBLISHING & MEDIA LTD.
(SCIENCE PRESS) Copyright © 2012
Authorized for sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and Macau
SAR). AJEALCAT AL HMC (BREH . A SmID #iE S RAT.
A B} 1T Wi 47 Pearson Education(5 25 #1 HHRAE) BOCBI PR . A% & AN 1HEI .

E B Eh Y% B (ClP) Bg
Bl 45 g FE et N C 18 5= Data Structures & Program Design in C: 2 hit: 95 C/(J8) 0

(Kruse,R.) %53 —}féLIIA‘. —Ibnt: FREHGE, 2013
(FAME BRFE SHERZ: JLE S R 41)
ISBN 978-7-03-036223-0
[.O%-- 1O . OFHREEH-9LQC HF-FEF RT3 IV, OTP311. 12@)TP312
rp LA B 456 CIP B0 % 7(2012) 45 308240 5
TR EMAT E B EPR: A& / HaEeit #RHE

4 3 2 K B R
AR KL BT 1 65
HEBUARAS < 100717
http: //www.sciencep.com

HETE &L N AR BRI
Bl RALRAT SR IE e

20134 1 HE — W JFA: 787X1092 1/16
2013 4F 1 FIES—IXEDR EPgK. 43
TH: 683 000
Efr: 95.00 7T
ChnA ERE i i) i, FR AL f o 4

Preface

An apprentice carpenter may want only a hammer and a saw, but a master crafts-
man employs many precision tools. Computer programming likewise requires so-
phisticated tools to cope with the complexity of real applications, and only practice
with these tools will build skill in their use. This book treats structured problem
solving, data abstraction, software engineering principles, and the comparative
analysis of algorithms as fundamental tools of program design. Several case stud-
ies of substantial size are worked out in detail, to show how all the tools are used
together to build complete programs.

Many of the algorithms and data structures we study possess an intrinsic el-
egance, a simplicity that cloaks the range and power of their applicability. Before
long the student discovers that vast improvements can be made over the naive
methods usually used in introductory courses. Yet this elegance of method is tem-
pered with uncertainty. The student soon finds that it can be far from obvious which
of several approaches will prove best in particular applications. Hence comes an
early opportunity to introduce truly difficult problems of both intrinsic interest and
practical importance and to exhibit the applicability of mathematical methods to
algorithm verification and analysis.

Many students find difficulty in translating abstract ideas into practice. This
book, therefore, takes special care in the formulation of ideas into algorithms and in
the refinement of algorithms into concrete programs that can be applied to practical
problems. The process of data specification and abstraction, similarly, comes before
the selection of data structures and their implementations.

We believe in progressing from the concrete to the abstract, in the careful de-
velopment of motivating examples, followed by the presentation of ideas in a more
general form. At an early stage of their careers most students need reinforcement
from seeing the immediate application of the ideas that they study, and they require
the practice of writing and running programs to illustrate each important concept
that they learn. This book therefore contains many sample programs, both short
functions and complete programs of substantial length. The exercises and pro-
gramming projects, moreover, constitute an indispensable part of the book. Many
of these are immediate applications of the topic under study, often requesting that
programs be written and run, so that algorithms may be tested and compared.
Some are larger projects, and a few are suitable for use by a small group of students
working together.

1X

X Preface

Synopsis

1. Programming
Principles

2. Introduction to
Software Engineering

3. Stacks and
Recursion

4. Queues and
Linked Lists

5. General Lists

6. Searching
7. Sorting

8. Tubles and
Information Retrieval

9. Binary Trees

10. Multiway Trees
11. Graphs

12. Case Study:
The Polish Notation

By working through the first large project (CoNwAY’s game of Life), Chapter 1
expounds principles of top-down refinement, program design, review, and test-
ing, principles that the student will see demonstrated and is expected to follow
throughout the sequel. At the same time, this project provides an opportunity for
the student to review the syntax of C, the programming language used throughout
the book.

Chapter 2 introduces a few of the basic concerns of software engineering, in-
cluding problem specification and analysis, prototyping, data abstraction, algo-
rithm design, refinement, verification, and analysis. The chapter applies these
principles to the development of a second program for the Life game, one based on
an algorithm that is sufficiently subtle as to show the need for precise specifications
and verification, and one that shows why care must be taken in the choice of data
structures.

Chapter 3 continues to elucidate data abstraction and algorithm design by
studying stacks as an abstract data type, recursion as a problem-solving method,
and the intimate connections among stacks, recursion, and certain trees.

Queues and lists are the central topics of the next two chapters. The chapters ex-
pound several different implementations of each abstract data type, develop large
application programs showing the relative advantages of different implementa-
tions, and introduce algorithm analysis in a very informal way. A major goal of
these chapters is to bring the student to appreciate data abstraction and to apply
methods of top-down design to data as well as to algorithms.

Chapters 6, 7, and 8 present algorithms for searching, sorting, and table access
(including hashing). These chapters illustrate the interplay between algorithms
and the associated abstract data types, data structures, and implementations. The
text introduces the “big O” notation for elementary algorithm analysis and high-
lights the crucial choices to be made regarding best use of space, time, and pro-
gramming effort.

These choices require that we find analytical methods to assess algorithms,
and producing such analyses is a battle for which combinatorial mathematics must
provide the arsenal. At an elementary level we can expect students neither to be
well armed nor to possess the mathematical maturity needed to hone their skills
to perfection. Our goal, therefore, is to help students recognize the importance of
such skills in anticipation of later chances to study mathematics.

Binary trees are surely among the most elegant and useful of data structures.
Their study, which occupies Chapter 9, ties together concepts from lists, searching,
and sorting. As recursively defined data structures, binary trees afford an excellent
opportunity for the student to become comfortable with recursion applied both to
data structures and algorithms. The chapter begins with elementary topics and
progresses as far as splay trees and amortized algorithm analysis.

Chapter 10 continues the study of more sophisticated data structures, including
tries, B-trees, and red-black trees. The next chapter introduces graphs as more
general structures useful for problem solving.

The case study in Chapter 12 examines the Polish notation in considerable
detail, exploring the interplay of recursion, trees, and stacks as vehicles for problem

A. Mathematical
Methods

B. Removal of
Recursion

C. An Introduction
to C

Changes in the Second Edition

Preface o Changes in the Second Edition xi

solving and algorithm development. Some of the questions addressed can serve
as an informal introduction to compiler design.. As usual, the algorithms are fully
developed within a functioning C program. This program accepts as input an
expression in ordinary (infix) form, translates the expression into postfix form, and
evaluates the expression for specified values of the variable(s).

The appendices discuss several topics that are not properly part of the book’s
subject but that are often missing from the student’s preparation.

Appendix A presents several topics from discrete mathematics. Its final two
sections, on Fibonacci and Catalan numbers, are more advanced and not needed for
any vital purpose in the text, but are included to encourage combinatorial interest
in the more mathematically inclined.

Removal of recursion is a topic that most programmers should no longer need
to study. But at present some important work must still be done in contexts (like
FORTRAN or CosoL) disallowing recursion. Methods for manual recursion removal
are therefore sometimes required, and are collected for reference as Appendix B.
Some instructors will wish to include the study of threaded binary trees with Chap-
ter 9; this section is therefore written so that it can be read independently of the
remainder of Appendix B.

Appendix C, finally, is a brief introduction to the C programming language.
This is not a thorough treatment of the language, but it is intended to serve as a
review of C syntax and as a reference for the student.

In this edition, the entire text has been carefully reviewed and revised to update
its presentation and to reflect the ideas of many readers who have communicated
their experiences in studying the book. The principal changes are summarized as
follows.

m All the programs have been rewritten, revised, and polished to emphasize data
abstraction, to develop and employ reusable code, and to strengthen uniformity
and elegance of style.

» The documentation has been strengthened by including informal specifications
(pre- and postconditions) with all subprograms.

m Recursion is treated much earlier in the text and then emphasized by repeated
use thereafter.

m The coverage of more advanced, modern topics has been extended by the
inclusion of several new sections, including splay trees, red-black trees, and
amortized algorithm analysis.

m The text highlights new case studies, such as the miniature text editor in Chap-
ter 5.

s New exercises and programming projects have been added, including contin-
uing projects on information retrieval that request the student to compare the
performance of several different data structures and algorithms.

xii

Preface

a The material on graph theory and graph algorithms has now been collected as
a separate chapter.

m T©he treatment of lists has been streamlined.

a The source code for all the programs and program extracts printed in the book
will be available on the internet. To reach this software under ftp, log in as
user anonymous on the ftp site prenhall.com and change to the directory

pub/esm/computer_science.s-041/kruse/dspdc2

@ Instructors teaching from this book may obtain, at no charge, the Instructor’s
Resource Manual, which includes:

Brief teaching notes on each chapter;
Full solutions to all exercises in the textbook;
Transparency masters;

A PC disk containing both the software mentioned previously and the full
source code for all programming projects from the textbook.

Course Structure e R

prerequisite

content

The prerequisite for this book is a first course in programming, with experience us-
ing the elementary features of C. Appendix C presents several advanced aspects of
C programming that are often omitted from introductory courses. A good knowl-
edge of high school mathematics will suffice for almost all the algorithm analyses,
but further (perhaps concurrent) preparation in discrete mathematics will prove
valuable. Appendix A reviews all required mathematics.

This book is intended for courses such as the ACM Course CS2 (Program Design
and Implementation), ACM Course CS7 (Data Structures and Algorithm Analysis), or
a course combining these. Thorough coverage is given to most of the ACM/IEEE
knowledge units! on data structures and algorithms. These include:

AL1 Basic data structures, such as arrays, tables, stacks, queues, trees, and graphs;
AL2 Abstract data types;
AL3 Recursion and recursive algorithms;
AL4 Complexity analysis using the big O notation;
AL6 Sorting and searching; and
AL8 Practical problem-solving strategies, with large case studies.
The three most advanced knowledge units, AL5 (complexity classes, NP-complete
problems), AL7 (computability and undecidability), and AL9 (parallel and dis-
tributed algorithms) are not treated in this book.

Most chapters of this book are structured so that the core topics are presented

first, followed by examples, applications, and larger case studies. Hence, if time
allows only a brief study of a topic, it is possible, with no loss of continuity, to move

T See Computing Curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum Task Force, ACM
Press, New York, 1990.

two-term course

Book Production

Preface o Book Production xiii

rapidly from chapter to chapter covering only the core topics. When time permits,
however, both students and instructor will enjoy the occasional excursion into the
supplementary topics and worked-out projects.

A two-term course can cover nearly the entire book, thereby attaining a satis-
fying integration of many topics from the areas of problem solving, data structures,
program development, and algorithm analysis. Students need time and practice to
understand general methods. By combining the studies of data abstraction, data
structures, and algorithms with their implementations in projects of realistic size,
an integrated course can build a solid foundation on which, later, more theoretical
courses can be built.

Even if this book is not covered in its entirety, it will provide enough depth to
enable interested students to continue using it as a reference in later work. It is
important in any case to assign major programming projects and to allow adequate
time for their completion.

This book and its supplements were written and produced with the first author’s
software called PreTgX, a preprocessor and macro package for the TgX typesetting
system.? PrelgX, by exploiting context dependency, automatically supplies much
of the typesetting markup required by TgX. PreIEX also supplies several tools useful
to the author, such as a powerful cross-reference system, greatly simplified typeset-
ting of mathematics and computer-program listings, and automatic generation of
the index and table of contents, while allowing the processing of the book in conve-
niently small files at every stage. Solutions, placed with exercises and projects, are
automatically removed from the text and placed in a separate manual. In conjunc-
tion with the PosTSCRIPT page-description language, PreTgX provides convenient
facilities for color separation, halftone screens, and other special results.

For a book such as this, PreIEX’s treatment of computer programs is its most
important feature. Computer programs are not included with the main body of the
text; instead, they are placed in separate, secondary files, along with any desired
explanatory text, and with any desired typesetting markup in place. By placing
tags at appropriate places in the secondary files, PrelgX can extract arbitrary parts
of a secondary file, in any desired order, for typesetting with the text. Another
utility (called StripTEX) can be used on the same file to remove all the tags, text, and
markup, with output that is a program ready to be compiled. The same input file
thus automatically produces both typeset program listings and compiled program
code. In this way, the reader gains increased confidence in the accuracy of the
computer program listings appearing in the text.

For this edition, all the diagrams and artwork have been produced as POSTSCRIPT
code in Adobe Illustrator. This allows the automatic inclusion of all figures in the
preliminary drafts of the manuscript and shortens the final stages of production
by removing any need for manual processing of camera copy.

2 TpX was developed by DONALD E. KNUTH, who has also made many important contributions to
our knowledge of data structures and algorithms. (See the entries under his name in the index.)

xiv

Acknowledgments

Preface

Over the years, this book and its Pascal antecedents have benefitted greatly from
the contributions of many people: family, friends, colleagues, and students. The
first edition lists some of the people whose contributions are especially notewor-
thy. Since the publication of the first edition, translations into several languages
have also appeared, and many more people have kindly forwarded their com-
ments and suggestions to us. In particular, it is a pleasure to acknowledge the
suggestions of the reviewers for the current edition: ALEx RyBa (Marquette Uni-
versity), RICHARD SAUNDERs (University of Arizona), DAvID STRAIGHT (University
of Tennessee, Knoxville), CARLOs CUNHA (Boston University), and GREG CAMERON
(Ricks College).

C. L. Tonpo also acknowledges the help of GEORGE EDMUNDs, Tom HORTON, Sam
Hsu, MariA PeTRIE (all of Florida Atlantic University), RoLE GuiLD (Nova South-
eastern University), Louis VosLoo (Y&Y, Inc.), NELsON FELIPPE DA SiLva (Polydata,
Inc.), Luiz BiavarTi, A. CArRLOs TONDO (T&T TechWorks, Inc.), ED HAUGHNEY, ANDREW
NATHANSON, RED Viscuso, and CAREN E. TONDO.

The editorial staff of Prentice Hall, especially ALAN Art, Publisher, and LAURA
SteeLe, Managing Editor, have displayed much patience, interest, and helpfulness
in bringing this project to a successful conclusion.

Jim Coorer of PreTgX, Inc., has expedited the appearance of this book and its sup-
plements by checking all the C programs, solving many problems of page makeup,
and by completing all the solutions to exercises and reworking the programming

rojects.
P]Finally, let us note that this book is an adaptation into C, by the second and third
authors, of the Pascal-based Data Structures and Program Design, third edition, by the
firstauthor. The first author is responsible for the language-independent discussion
and the other authors for the C programs and language-specific exposition.

RoBERT L. KRUSE
Crovis L. ToNDO
BruUCE P. LEUNG

Contents

PREFACE ix
Synopsis X
Changes in the Second Edition xi
Course Structure xii
Book Production xiii
Acknowledgments xiv

CHAPTER 1
Programming Principles

1.1 Introduction 2

1.2 The Game of Life 4
1.2.1 Rules for the Game of Life 4
1.2.2 Examples 5
1.2.3 The Solution 6
1.2.4 Life: The Main Program 7

1.3 Programming Style 10
1.3.1 Names 10
1.3.2 Documentation and Format 12
1.3.3 Refinement and Modularity 14

1.4 Coding, Testing, and
Further Refinement 19
1.4.1 Stubs 19
1.4.2 Counting Neighbors 20
1.4.3 Input and Output 21
1.4.4 Drivers 24
1.4.5 Program Tracing 25
1.4.6 Principles of Program Testing 26

Pointers and Pitfalls 30
Review Questions 32

References for Further Study 32
Cc 32
Programming Principles 33
The Game of Life 33

CHAPTER 2

Introduction to
Software Engineering 34

2.1 Program Maintenance 35
2.1.1 Review of the Life Program 35
2.1.2 A Fresh Start and a New Method for
Life 37

2.2 Algorithm Development:

A Second Version of Life 40

2.2.1 Lists: Specifications for a
Data Structure 40

2.2.2 The Main Program 45

2.2.3 Information Hiding 47

2.2.4 Refinement: Development of the
Subprograms 48

2.2.5 Verification of Algorithms 50

2.3 Coding 55
2.3.1 The List Functions 55
2.3.2 Error Processing 56
2.3.3 Demonstration and Testing 57

2.4 Coding the Life Functions 62
2.5 Program Analysis and Comparison 66

2.6 Conclusions and Preview 68
2.6.1 The Game of Life 68
2.6.2 Program Design 70
263 C 73

Pointers and Pitfalls 75
Review Questions 75
References for Further Study 76

iii

iv Contents

CHAPTER 3
Stacks and Recursion 77

3.1 Stacks 78
3.1.1 Introduction 78
3.1.2 First Example: Reversing a Line 79
3.1.3 Information Hiding 80
3.1.4 Specifications for a Stack 81
3.1.5 Implementation of Stacks 83
3.1.6 Linked Stacks 85

3.2 Introduction to Recursion 91
3.2.1 Stack Frames for Subprograms 91
3.2.2 Tree of Subprogram Calls 91
3.2.3 Factorials: A Recursive Definition 93
3.2.4 Divide and Conquer:
The Towers of Hanoi 95

3.3 Backtracking: Postponing the Work 101
3.3.1 Solving the Eight-Queens Puzzle 102
3.3.2 Example: Four Queens 102
3.3.3 Backtracking 103
3.3.4 Refinement:

Choosing the Data Structures ‘104
3.3.5 Analysis of Backtracking 107

3.4 Principles of Recursion 110
3.4.1 Designing Recursive Algorithms 110
3.4.2 How Recursion Works 111
3.4.3 Tail Recursion 115
3.4.4 When Not to Use Recursion 116
3.4.5 Guidelines and Conclusions 120

Pointers and Pitfalls 122
Review Questions 124

References for Further Study 124

CHAPTER 4
Queues and Linked Lists 126

4.1 Definitions 127
4.2 Implementations of Queues 131
4.3 Circular Queues in C 135

4.4 Application of Queues: Simulation 139
44.1 Introduction 139
4.4.2 Simulation of an Airport 140
4.4.3 The Main Program 142
4.4.4 Steps of the Simulation 144
4.4.5 Pseudo-Random Numbers 147
4.4.6 Sample Results 149

4.5 Pointers and Linked Lists 152
4.5.1 Introduction and Survey 152
4.5.2 Pointers and Dynamic Memory in C 155
4.5.3 The Basics of Linked Lists 159

4.6 Linked Queues 161

4.7 Application:
Polynomial Arithmetic 166
4.7.1 Purpose of the Project 166
4.7.2 The Main Program 166
4.7.3 Data Structures and Their
Implementation 171
4.7.4 Reading and Writing Polynomials 172
4.7.5 Addition of Polynomials 174
4.7.6 Completing the Project 176

4.8 Abstract Data Types and

Their Implementations 179

4.8.1 Introduction 179

4.8.2 General Definitions 180

4.8.3 Refinement of Data Specification 183

Pointers and Pitfalls 185
Review Questions 185

References for Further Study 186

CHAPTER 5
General Lists 187

5.1 List Specifications 188

5.2 Implementation of Lists 190
5.2.1 Contiguous Implementation 190
5.2.2 Simply Linked Implementation 191
5.2.3 Variation: Keeping the Current
Position 195
5.2.4 Doubly Linked Lists 197
5.2.5 Comparison of Implementations 200

5.3 Strings 202

5.4 Application: A Text Editor 205
5.4.1 Specifications 205
5.4.2 Implementation 207

5.5 Linked Lists in Arrays 214
5.6 Generating Permutations 223
Pointers and Pitfalls 228

Review Questions 229
References for Further Study 230

CHAPTER 6
Searching 231
6.1 Searching:
Introduction and Notation 232
6.2 Sequential Search 235

6.3

6.4

6.5

6.6
6.7

Coatrooms: A Project 241
6.3.1 Introduction and Specification =~ 241
6.3.2 Demonstration and Testing

Programs 244

Binary Search 248

6.4.1 Algorithm Development 249
6.4.2 The Forgetful Version = 249
6.4.3 Recognizing Equality 252

Comparison Trees 254

6.5.1 Analysisforn =10 255
6.5.2 Generalization 258

6.5.3 Comparison of Methods 261
6.5.4 A General Relationship 263

Lower Bounds 264

Asymptotics 269

6.7.1 Introduction 269

6.7.2 The Big-O Notation 270

6.7.3 Imprecision of the Big-O Notation 273
6.7.4 Ordering of Common Functions 274

Pointers and Pitfalls 275

Review Questions 276
References for Further Study 276

CHAPTER 7
Sorting 278

71
7.2

7.3

7.4
7.5

Introdu_ction and Notation 279

Insertion Sort 280

7.2.1 Ordered Lists 280

7.2.2 Sorting by Insertion 281
7.2.3 Linked Version 283
7.2.4 Analysis 285

Selection Sort 288

7.3.1 The Algorithm 289

7.3.2 Contiguous Implementation 290
7.3.3 Analysis 291

7.3.4 Comparisons 291

Shell Sort 293
Lower Bounds 295

Contents v

7.6 Divide-and-Conquer Sorting 298
7.6.1 The MainIdeas 298
7.6.2 An Example 299

7.7 Mergesort for Linked Lists 304
7.7.1 The Functions 304
7.7.2 Analysis of Mergesort 306

7.8 Quicksort for Contiguous Lists 311
7.8.1 The Main Function 311
7.8.2 Partitioning the List 312
7.8.3 Analysis of Quicksort 314
7.8.4 Average-Case Analysis of Quicksort 316
7.8.5 Comparison with Mergesort 318

7.9 Heaps and Heapsort 321
7.9.1 Two-Way Trees as Lists 322
7.9.2 Heapsort 323
79.3 Analysis of Heapsort 327
7.9.4 Priority Queues 328

7.10 Review: Comparison of Methods 330
Pointers and Pitfalls 333
Review Questions 334
References for Further Study 334

CHAPTER 8
Tables and Information Retrieval _ 336

8.1 Introduction:
Breaking the lg n Barrier 337

8.2 Rectangular Arrays 337

8.3 Tables of Various Shapes 340
8.3.1 Triangular Tables 340
8.3.2 Jagged Tables 342
8.3.3 Inverted Tables 342

8.4 Tables: A New Abstract Data Type 345

8.5 Application: Radix Sort 348
851 Theldea 348
8.5.2 Implementation 349
853 Analysis 352

8.6 Hashing 353
8.6.1 Sparse Tables 353
8.6.2 Choosing a Hash Function 355
8.6.3 Collision Resolution with
Open Addressing 357
8.6.4 Collision Resolution by Chaining 362

8.7 Analysis of Hashing 367

vi

8.8

8.9

Pointers and Pitfalls
Review Questions

References for Further Study

Contents

Conclusions:
Comparison of Methods 373

Application:

The Life Game Revisited 374
8.9.1 Choice of Algorithm 374
8.9.2 Specification of Data Structures
8.9.3 The Main Program 376
8.9.4 Functions 377

380
381

374

332

CHAPTER 9

Binary Trees

9.1

9.2

9.3

9.4

9.5

383

Introduction to Binary Trees 384
9.1.1 Definitions 384

9.1.2 Traversal of Binary Trees
9.1.3 Linked Implementation of

Binary Trees 391

386

Binary Search Trees 396

9.2.1 Ordered Lists and Implementations
9.2.2 Treesearch 398

9.2.3 Insertion into a Binary Search Tree
9.2.4 Treesort 404

9.2.5 Deletion from a Binary Search Tree

414

397
401

406

Building a Binary Search Tree

9.3.1 Getting Started 415

9.3.2 Declarations and the Main Function

9.3.3 Inserting a Node 417

9.3.4 Finishing the Task 418

9.3.5 Evaluation 419

9.3.6 Random Search Trees and
Optimality 419

Height Balance: AVL Trees
9.4.1 Definition 423

9.4.2 Insertion of a Node 424
9.4.3 Deletion of a Node 431
9.4.4 The Height of an AVL Tree

416

422

433

Splay Trees:

A Self-Adjusting Data Structure

9.5.1 Introduction 438

9.5.2 Splaying Steps 439

9.5.3 Splaying Algorithm 442

9.5.4 Amortized Algorithm Analysis:
Introduction 446

9.5.5 Amortized Analysis of Splaying

438

449

455
456

Pointers and Pitfalls
Review Questions

References for Further Study 458

CHAPTER 10
Multiway Trees 459
10.1 Orchards, Trees, and Binary Trees 460
10.1.1 On the Classification of Species 460
10.1.2 Ordered Trees 461
10.1.3 Forests and Orchards 463
10.1.4 The Formal Correspondence 464
10.1.5 Rotations 465
10.1.6 Summary 466
10.2 Lexicographic Search Trees: Tries 468

10.2.1 Tries 468

10.2.2 Searching for a Key
10.2.3 C Algorithm 470
10.2.4 Insertion into a Trie
10.2.5 Deletion from a Trie
10.2.6 Assessment of Tries

468

470
472
472

10.3 External Searching: B-Trees 473
10.3.1 Access Time 473
10.3.2 Multiway Search Trees
10.3.3 Balanced Multiway Trees
10.3.4 Insertion into a B-tree
10.3.5 C Algorithms:

Searching and Insertion

10.3.6 Deletion from a B-tree

Red-Black Trees 492
10.4.1 Introduction 492
10.4.2 Definition and Analysis
10.4.3 Insertion 495

10.4.4 C Insertion 496

474
474
475

477
483

10.4

493

10.5 Tree-Structured Programs:
Look-Ahead in Games
10.5.1 Game Trees 501
10.5.2 The Minimax Method
10.5.3 Algorithm Development

10.5.4 Refinement 504
507
507

501

502
503

Pointers and Pitfalls
Review Questions

References for Further Study 508

CHAPTER 11

Graphs

11.1 Mathematical Background 511
11.1.1 Definitions and Examples 511
11.1.2 Undirected Graphs 512
11.1.3 Directed Graphs 512

11.2 Computer Representation 513

11.3 Graph Traversal 517
11.3.1 Methods 517
11.3.2 Depth-First Algorithm 518
11.3.3 Breadth-First Algorithm 519

11.4 Topological Sorting 520
11.4.1 The Problem 520
11.4.2 Depth-First Algorithm 522
11.4.3 Breadth-First Algorithm 523

11.5 A Greedy Algorithm:
Shortest Paths 525

11.6 Graphs as Data Structures 529
Pointers and Pitfalls 531

Review Questions 532

References for Further Study 532

CHAPTER 12

510

Case Study: The Polish Notation __ 533

12.1 The Problem 534
12.1.1 The Quadratic Formula 534

12.2 The Idea 536
12.2.1 Expression Trees 536
12.2.2 Polish Notation 538
12.2.3 C Method 539

12.3 Evaluation of Polish Expressions
12.3.1 Evaluation of an Expression in
Prefix Form 540
12.3.2 C Conventions 541
12.3.3 C Function for Prefix Evaluation
12.3.4 Evaluation of Postfix Expressions
12.3.5 Proof of the Program:
Counting Stack Entries 544
12.3.6 Recursive Evaluation of
Postfix Expressions 547

12.4 Translation from Infix Form to Polish
Form 551

540

542

542

Contents

12.5 An Interactive Expression
Evaluator 558
12.5.1 Overall Structure 558
12.5.2 Representation of the Data 560
12.5.3 Initialization and Auxiliary Tasks
12.5.4 Translation of the Expression 566
12.5.5 Evaluating the Expression 574
12.5.6 Graphing the Expression 576

References for Further Study 578

APPENDIX A
Mathematical Methods

A.1 Sums of Powers of Integers 580

A.2 Logarithms 582
A.2.1 Definition of Logarithms 583
A.2.2 Simple Properties 583
A.2.3 Choice of Base = 584
A.2.4 Natural Logarithms 584
A.2.5 Notation 585
A.2.6 Change of Base 586
A.2.7 Logarithmic Graphs 586
A.2.8 Harmonic Numbers 588

A.3 Permutations, Combinations,
Factorials 589
A.3.1 Permutations 589
A.3.2 Combinations 589
A.3.3 Factorials 590

A.4 Fibonacci Numbers 592

A.5 Catalan Numbers 594
A.5.1 The Main Result 594
A.5.2 The Proof by One-to-One

Correspondences 594
A.5.3 History 596
A.5.4 Numerical Results 597

References for Further Study 598

APrPENDIX B
Removal of Recursion

B.1 General Methods for Removing
Recursion 601
B.1.1 Preliminary Assumptions 601
B.1.2 General Rules 602
B.1.3 Indirect Recursion 603
B.1.4 Towers of Hanoi 603
B.1.5 Further Simplifications 605

viii

B.2 Recursion Removal by Folding 606 C.4 QOperators 635
B.2.1 Program Schemata 606
B.2.2 Proof of the Transformatior 607 C.5 Control Flow Statements 636
B.2.3 Towers of Hanoi: C.5.1 If - Else 636
The Final Version 609 C.5.2 Switch 636

C.5.3 Loops 637

. C.5.4 Break and Continue 637
B.4 Stackless Recursion Removal: C55 Goto 637

Mergesort 613

B.5 Threaded Binary Trees 617 ; . .
B5.1 Introduction 617 C.6.1 Pointer to a Simple Variable 638

B.5.2 Threads 619 C.6.2 Pointer to an Array 639
B.5.3 Inorder and Preorder Traversal 620 C6.3 Ar.ray of Pointers 640
B.5.4 Insertion in a Threaded Tree 621 C.6.4 Pointer to Structures 641
B.5.5 Postorder Traversal 623 .

C.7 Functions 642

References for Further Study 627 C.7.1 Arguments to Functions:
Call by Value 642
C.7.2 Arguments to Functions:

B.3 Nonrecursive Quicksort 611

C.6 Pointers 638

AprpPENDIX C
" Call by Reference 643
At Intnoductinm b C 628 C73 Functi}(l)n Prototypes and Include
C.1 Introduction 629 Files 644
C.1.1 Overview of a C Program 629 C.8 Pointers and Functions cis
C.2 C Elements 629 C.8.1 Pointer to a Function 644
C.2.1 Reserved Words 629 C.8.2 Functions that Return a Pointer 645
€22 Constants 629 C.8.3 Pointer to a Pointer as an
C.3 Types and Declarations 631 Argument 646

C.3.1 Basic Types 631
C.3.2 Arrays 631

C.3.3 Enumerations 631
C.3.4 Structures 632
C.3.5 Unions 632

C.3.6 Type Definitions with typedef 634 INDEX 649

References for Further Study 647

kalﬁ« ddres in lnter kapteré; and review

5

C by using them to write programs. |

 many of the special features of the Ingua e

1.1 Introduction 2

1.2 The Game of Life 4
1.2.1 Rules for the Game of
Life 4
1.2.2 Examples 5
1.2.3 The Seolution 6
1.2.4 Life: The Main Program

1.3 Programming Style 10
131 Names 10
1.3.2 Documentation and
Format 12
1.3.3 Refinement and
Modularity 14

1.4 Coding, Testing, and Further
Refinement 19
141 Stubs 19
14.2 Counting Neighbors 20
14.3 Inputand Output 21
144 Drivers 24
1.4.5 Program Tracing 25
1.4.6 Principles of Program

Testing 26

Pointers and Pitfalls 30

Review Questions 32

References for Further Study 32
C 32
Programming Principles 33
The Game of Life 33

4

7

2 Chapter 1 o Programming Principles

1.1 Introduction T e e e e T T e o ST ey S, S T O S

problems of large
programs

purpose of book

problem specification

program design

The greatest difficulties of writing large computer programs are not in deciding
what the goals of the program should be, nor even in finding methods that can
be used to reach these goals. The president of a business might say, “Let’s get a
computer to keep track of all our inventory information, accounting records, and
personnel files, and let it tell us when inventories need to be reordered and budget
lines are overspent, and let it handle the payroll.” With enough time and effort, a
staff of systems analysts and programmers might be able to determine how various
staff members are now doing these tasks and write programs to do the work in the
same way.

This approach, however, is almost certain to be a disastrous failure. While
interviewing employees, the systems analysts will find some tasks that can be put
on the computer easily and will proceed to do so. Then, as they move other work
to the computer, they will find that it depends on the first tasks. The output from
these, unfortunately, will not be quite in the proper form. Hence they need more
programming to convert the data from the form given for one task to the form
needed for another. The programming project begins to resemble a patchwork
quilt. Some of the pieces are stronger, some weaker. Some of the pieces are carefully
sewn onto the adjacent ones, some are barely tacked together. If the programmers
are lucky, their creation may hold together well enough to do most of the routine
work most of the time. But if any change must be made, it will have unpredictable
consequences throughout the system. Later, a new request will come along, or an
unexpected problem, perhaps even an emergency, and the programmers’ efforts
will prove as effective as using a patchwork quilt as a safety net for people jumping
from a tall building,.

The main purpose of this book is to describe programming methods and tools
that will prove effective for projects of realistic size, programs much larger than
those ordinarily used to illustrate features of elementary programming. Since a
piecemeal approach to large problems is doomed to fail, we must first of all adopt
a consistent, unified, and logical approach, and we must also be careful to observe
important principles of program design, principles that are sometimes ignored in
writing small programs, but whose neglect will prove disastrous for large projects.

The first major hurdle in attacking a large problem is deciding exactly what
the problem is. It is necessary to translate vague goals, contradictory requests,
and perhaps unstated desires into a precisely formulated project that can be pro-
grammed. And the methods or divisions of work that people have previously used
are not necessarily the best for use in a machine. Hence our approach must be to
determine overall goals, but precise ones, and then slowly divide the work into
smaller problems until they become of manageable size.

The maxim that many programmers observe, “First make your program work,
then make it pretty,” may be effective for small programs, but not for large ones.
Each part of a large program must be well organized, clearly written, and thor-
oughly understood, or else its structure will have been forgotten, and it can no
longer be tied o the other parts of the project at some much later time, perhaps by
another programmer. Hence we do not separate style from other parts of program
design, but from the beginning we must be careful to form good habits.

