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FINITE-TEMPERATURE FIELD THEORY
Principles and Applications

This book develops the basic formalism and theoretical techniques for study-
ing relativistic quantum field theory at high temperature and density. Specific
physical theories treated include QED, QCD, electroweak theory, and effective
nuclear field theories of hadronic and nuclear matter. Topics include functional
integral representation of the partition function, diagrammatic expansions, lin-
ear response theory, screening and plasma oscillations, spontaneous symmetry
breaking, the Goldstone theorem, resummation and hard thermal loops, lattice
gauge theory, phase transitions, nucleation theory, quark—gluon plasma, and color
superconductivity. Applications to astrophysics and cosmology include white
dwarf and neutron stars, neutrino emissivity, baryon number violation in the
early universe, and cosmological phase transitions. Applications to relativistic
nucleus—nucleus collisions are also included.

JosepH I. KarPusTA is Professor of Physics at the School of Physics and Astron-
omy, University of Minnesota, Minneapolis. He received his Ph.D. from the Uni-
versity of California, Berkeley, in 1978 and has been a faculty member at the
University of Minnesota since 1982. He has authored over 150 articles in refereed
journals and conference proceedings. Since 1997 he has been an associate editor
for Physical Review C. He is a Fellow of the American Physical Society and of
the American Association for the Advancement of Science. The first edition of
Finite-Temperature Field Theory was published by Cambridge University Press
in 1989; a paperback edition followed in 1994.

CHARLES GALE is James McGill Professor at the Department of Physics, McGill
University, Montreal. He received his Ph.D. from McGill University in 1986 and
joined the faculty there in 1989. He has authored over 100 articles in refereed
journals and conference proceedings. Since 2005 he has been the Chair of the
Department of Physics at McGill University. He is a Fellow of the American
Physical Society.
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Preface

What happens when ordinary matter is so greatly compressed that the
electrons form a relativistic degenerate gas, as in a white dwarf star? What
happens when the matter is compressed even further so that atomic nuclei
overlap to form superdense nuclear matter, as in a neutron star? What
happens when nuclear matter is heated to such great temperatures that
the nucleons and pions melt into quarks and gluons, as in high-energy
nuclear collisions? What happened in the spontaneous symmetry break-
ing of the unified theory of the weak and electromagnetic interactions
during the big bang? Questions like these have fascinated us for a long
time. The purpose of this book is to develop the fundamental principles
and mathematical techniques that enable the formulation of answers to
these mind-boggling questions. The study of matter under extreme con-
ditions has blossomed into a field of intense interdisciplinary activity and
global extent. The analysis of the collective behavior of interacting rela-
tivistic systems spans a rich palette of physical phenomena. One of the
ultimate goals of the whole program is to map out the phase diagram of
the standard model and its extensions.

This text assumes that the reader has completed graduate level courses
in thermal and statistical physics and in relativistic quantum field theory.
Our aims are to convey a coherent picture of the field and to prepare the
reader to read and understand the original and current literature. The
book is not, however, a compendium of all known results; this would have
made it prohibitively long. We start from the basic principles of quantum
field theory, thermodynamics, and statistical mechanics. This develop-
ment is most elegantly accomplished by means of Feynman’s functional
integral formalism. Having a functional integral expression for the parti-
tion function allows a straightforward derivation of diagrammatic rules for
interacting field theories. It also provides a framework for defining gauge
theories on finite lattices, which then enables integration by Monte Carlo
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xii Preface

techniques. The formal aspects are illustrated with applications drawn
from fields of research that are close to the authors’ own experience. Each
chapter carries its own exercises, reference list, and select bibliography.

The book is based on Finite- Temperature Field Theory, written by one
of us (JK) and published in 1989. Although the fundamental principles
have not changed, there have been many important developments since
then, necessitating a new book.

We would like to acknowledge the assistance of Frithjof Karsch and
Steven Gottlieb in transmitting some of their results of lattice computa-
tions, presented in Chapter 10, and Andrew Steiner for performing the
numerical calculations used to prepare many of the figures in Chapter
11. We are grateful to a number of friends, colleagues, and students for
their helpful comments and suggestions and for their careful reading of the
manuscript, especially Peter Arnold, Eric Braaten, Paul Ellis, Philippe de
Forcrand, Bengt Friman, Edmond Iancu, Sangyong Jeon, Keijo Kajantie,
Frithjof Karsch, Mikko Laine, Stefan Leupold, Guy Moore, Ulrich Mosel,
Robert Pisarski, Brian Serot, Andrew Steiner, and Laurence Yaffe.
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1

Review of quantum statistical mechanics

Thermodynamics is used to describe the bulk properties of matter in or
near equilibrium. Many scientists, notably Boyle, Carnot, Clausius, Gay-
Lussac, Gibbs, Joule, Kelvin, and Rumford, contributed to the develop-
ment of the field over three centuries. Quantities such as mass, pressure,
energy, and so on are readily defined and measured. Classical statistical
mechanics attempts to understand thermodynamics by the application of
classical mechanics to the microscopic particles making up the system.
Great progress in this field was made by physicists like Boltzmann and
Maxwell. Temperature, entropy, particle number, and chemical potential
are thus understandable in terms of the microscopic nature of matter.
Classical mechanics is inadequate in many circumstances however, and
ultimately must be replaced by quantum mechanics. In fact, the ultravio-
let catastrophe encountered by the application of classical mechanics and
electromagnetism to blackbody radiation was one of the problems that
led to the development of quantum theory. The development of quan-
tum statistical mechanics was achieved by a number of twentieth century
physicists, most notably Planck, Einstein, Fermi, and Bose. The purpose
of this chapter is to give a mini-review of the basic concepts of quantum
statistical mechanics as applied to noninteracting systems of particles.
This will set the stage for the functional integral representation of the
partition function, which is a cornerstone of modern relativistic quantum
field theory and the quantum statistical mechanics of interacting particles
and fields.

1.1 Ensembles

One normally encounters three types of ensemble in equilibrium statistical
mechanics. The microcanonical ensemble is used to describe an isolated
system that has a fixed energy F, a fixed particle number N, and a fixed
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2 Review of quantum statistical mechanics

volume V. The canonical ensemble is used to describe a system in contact
with a heat reservoir at temperature 7. The system can freely exchange
energy with the reservoir, but the particle number and volume are fixed.
In the grand canonical ensemble the system can exchange particles as well
as energy with a reservoir. In this ensemble the temperature, volume, and
chemical potential p are fixed quantities. The standard thermodynamic
relations are summarized in appendix section Al.1.

In the canonical and grand canonical ensembles, 7! = 3 may be
thought of as a Lagrange multiplier that determines the mean energy
of the system. Similarly, u may be thought of as a Lagrange multiplier
that determines the mean number of particles in the system. In a rela-
tivistic quantum system, where particles can be created and destroyed,
it is most straightforward to compute observables in the grand canonical
ensemble. For that reason we use the grand canonical ensemble through-
out this book. There is no loss of generality in doing so because one
may pass over to either of the other ensembles by performing an inverse
Laplace transform on the variable p and/or the variable 3. See appendix
section Al.2.

Consider a system described by a Hamiltonian H and a set of con-
served number operators N;. (A hat or caret is used to denote an opera-
tor for emphasis or whenever there is the possibility of an ambiguity.) In
QED, for example, the number of electrons minus the number of positrons
is a conserved quantity, not the number of electrons or positrons sepa-
rately, because of reactions like ete™ — eTete~e~. These number oper-
ators must be Hermitian and must commute with H as well as with each
other. They must also be extensive (scale with the volume of the system)
in order that the usual macroscopic thermodynamic limit can be taken.
The statistical density matrix p is the fundamental object in equilibrium
statistical mechanics:

ﬁzexp[—ﬁ(H—/iiNi)] (1.1)

Here and throughout the book a repeated index is assumed to be summed
over. In QED the sum would run over two conserved number operators if
one allowed for both electrons and muons. The statistical density matrix
is used to compute the ensemble average of any desired observable, rep-
resented by the operator A, via
. TrAp
A=(A) = —C 1.2

(4) = (1.2)

where Tr denotes the trace operation.
The grand canonical partition function

Z=Z(V,T,u1,u2,...)=’I‘rﬁ (13)



1.2 One bosonic degree of freedom 3

is the single most important function in thermodynamics. From it all the
thermodynamic properties may be determined. For example, the pressure,
particle number, entropy, and energy are, in the infinite-volume limit,
given by
_0(TnZ)
oV
N; = 6T'nZ) (1.4)
Opi
_ 0(T'n2Z)
T
E=—-PV+TS+ pN;

1.2 One bosonic degree of freedom

As a simple example consider a time-independent single-particle quantum
mechanical mode that may be occupied by bosons. Each boson in that
mode has the same energy w. There may be 0, 1, 2, or any number of
bosons occupying that mode. There are no interactions between the par-
ticles. This system may be thought of as a set of noninteracting quantized
simple harmonic oscillators. It will serve as a prototype of the relativistic
quantum field theory systems to be introduced in later chapters. We are
interested in computing the mean particle number, energy, and entropy.
Since the system has no volume there is no physical pressure.

Denote the state of the system by |n), which means that there are n
bosons in the system. The state |0) is called the vacuum. The properties
of these states are

(n|n'y = 6, orthogonality (1.5)

oo
Z In)(n| =1 completeness (1.6)
n=0

One may think of the bras (n| and kets |n) as row and column vectors,
respectively, in an infinite-dimensional vector space. These vectors form a
complete set. The operation in (1.5) is an inner product and the number
1 in (1.6) stands for the infinite-dimensional unit matrix.

It is convenient to introduce creation and annihilation operators, af
and a, respectively. The creation operator creates one boson and puts it
in the mode under consideration. Its action on a number eigenstate is

atln) = vVn+1jn +1) (1.7)
Similarly, the annihilation operator annihilates or removes one boson,

aln) = v/n|n — 1) (1.8)



4 Review of quantum statistical mechanics

unless n = 0, in which case it annihilates the vacuum,
al0) =0 (1.9)

Apart from an irrelevant phase, the coefficients appearing in (1.7) and
(1.8) follow from the requirements that a' and a be Hermitian conjugates
and that afa be the number operator N. That is,

N|n) = a'a|n) = n|n) (1.10)
As a consequence the commutator of a with al is
[a,a'] = aa' —ala =1 (1.11)
We can build all states from the vacuum by repeated application of the
creation operator:
1
Vnl

Next we need a Hamiltonian. Up to an additive constant, it must be
w times the number operator. Starting with a wave equation in nonrela-
tivistic or relativistic quantum mechanics the additive constant emerges
naturally. One finds that

n) = —={(a)"|0) (1.12)

H = iw(aa! +afa) =w (ala+ 3) =w (JV -+ %) (1.13)
The additive term %w is the zero-point energy. Usually this term can
be ignored. Exceptions arise when the vacuum changes owing to a back-
ground field, such as the gravitational field or an electric field, as in the
Casimir effect. We shall drop this term in the rest of the chapter and leave
it as an exercise to repeat the following analysis with the inclusion of the
zero-point energy.

The states |n) are simultaneous eigenstates of energy and particle num-
ber. We can assign a chemical potential to the particles. This is possible
because there are no interactions to change the particle number. The
partition function is easily computed:

= Tre-B(H—#N) — ’I‘re_ﬁ(“’_“)N

oo oo

== E(me—ﬁ(w—u)Nm) a Ze~ﬁ(w—u)n (1.14)
n=0 =0

. 1

T 1 — e Blw—p)

The mean number of particles is found from (1.4) to be

1

= eBlw—p) _1

(1.15)



