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Preface

While significant changes have been made in the current edition from its predecessor, the
authors have tried to keep the discussion at the same level of accessibly, that is, less math-
ematical than the measure theory approach but more rigorous than formula and recipe
manuals.

It has been said that probability is hard to understand, not so much because of its
mathematical underpinnings but because it produces many results that are counter intuitive.
Among practically oriented students, Probability has many critics. Foremost among these are
the ones who ask, “What do we need it for?” This criticism is easy to answer because future
engineers and scientists will come to realize that almost every human endeavor involves
making decisions in an uncertain or probabilistic environment. This is true for entire fields
such as insurance, meteorology, urban planning, pharmaceuticals, and many more. Another,
possibly more potent, criticism is, “What good is probability if the answers it furnishes are
not certainties but just inferences and likelihoods?” The answer here is that an immense
amount of good planning and accurate predictions can be done even in the realm of uncer-
tainty. Moreover, applied probability—often called statistics—does provide near certainties:
witness the enormous success of political polling and prediction.

In previous editions, we have treaded lightly in the area of statistics and more heavily
in the area of random processes and signal processing. In the electronic version of this book,
graduate-level signal processing and advanced discussions of random processes are retained,
along with new material on statistics. In the hard copy version of the book, we have dropped
the chapters on applications to statistical signal processing and advanced topics in random
processes, as well as some introductory material on pattern recognition.

The present edition makes a greater effort to reach students with more expository
examples and more detailed discussion. We have minimized the use of phrases such as,

11



12 Preface

” ”

“it is easy to show...”, “it can be shown...”, “it is easy to see...,” and the like. Also,
we have tried to furnish examples from real-world issues such as the efficacy of drugs,
the likelihood of contagion, and the odds of winning at gambling, as well as from digital
communications, networks, and signals.

The other major change is the addition of two chapters on elementary statistics and its
applications to real-world problems. The first of these deals with parameter estimation and
the second with hypothesis testing. Many activities in engineering involve estimating para-
meters, for example, from estimating the strength of a new concrete formula to estimating
the amount of signal traffic between computers. Likewise many engineering activities involve
making decisions in random environments, from deciding whether new drugs are effective to
deciding the effectiveness of new teaching methods. The origin and applications of standard
statistical tools such as the t-test, the Chi-square test, and the F-test are presented and
discussed with detailed examples and end-of-chapter problems.

Finally, many self-test multiple-choice exams are now available for students at the book
Web site. These exams were administered to senior undergraduate and graduate students
at the Illinois Institute of Technology during the tenure of one of the authors who taught
there from 1988 to 2006. The Web site also includes an extensive set of small MATLAB
programs that illustrate the concepts of probability.

In summary then, readers familiar with the 3'¢ edition will see the following significant
changes:

e A new chapter on a branch of statistics called parameter estimation with many illus-
trative examples;

o A new chapter on a branch of statistics called hypothesis testing with many illustrative
examples;

¢ A large number of new homework problems of varying degrees of difficulty to test the
student’s mastery of the principles of statistics;

e A large number of self-test, multiple-choice, exam questions calibrated to the material
in various chapters available on the Companion Web site.

e Many additional illustrative examples drawn from real-world situations where the
principles of probability and statistics have useful applications;

e A greater involvement of computers as teaching/learning aids such as (i) graphical
displays of probabilistic phenomena; (ii) MATLAB programs to illustrate probabilistic
concepts; (iii) homework problems requiring the use of MATLAB/ Excel to realize
probability and statistical theory;

e Numerous revised discussions—based on student feedback—meant to facilitate the
understanding of difficult concepts.

Henry Stark, IIT
Professor Emeritus

John W. Woods, Rensselaer
Professor

The publishers would like to thank Dr Murari Mitra and Dr Tamaghna Acharya of

Bengal Engineering and Science University for reviewing content for the International
Edition.



Introduction to Probability

1.1 INTRODUCTION: WHY STUDY PROBABILITY?

One of the most frequent questions posed by beginning students of probability is, “Is
anything truly random and if so how does one differentiate between the truly random
and that which, because of a lack of information, is treated as random but really isn’t?”
First, regarding the question of truly random phenomena, “Do such things exist?” As we
look with telescopes out into the universe, we see vast arrays of galaxies, stars, and planets
in apparently random order and position.

At the other extreme from the cosmic scale is what happens at the atomic level. Qur
friends the physicists speak of such things as the probability of an atomic system being in
a certain state. The uncertainty principle says that, try as we might, there is a limit to
the accuracy with which the position and momentum can be simultaneously ascribed to a
particle. Both quantities are fuzzy and indeterminate.

Many, including some of our most famous physicists, believe in an essential random- .
ness of nature. Eugen Merzbacher in his well-known textbook on quantum mechanics [1-1]
writes,

The probability doctrine of quantum mechanics asserts that the indetermination, of
which we have just given an example, is a property inherent in nature and not merely a
profession of our temporary ignorance from which we expect to be relieved by a future
better and more complete theory. The conventional interpretation thus denies the
possibility of an ideal theory which would encompass the present quantum mechanics

13



14 Chapter 1 Introduction to Probability

but would be free of its supposed defects, the most notorious “imperfection” of quantum
mechanics being the abandonment of strict classical determinism.

But the issue of determinism versus inherent indeterminism need never even be consid-
ered when discussing the validity of the probabilistic approach. The fact remains that there
is, quite literally, a nearly uncountable number of situations where we cannot make any
categorical deterministic assertion regarding a phenomenon because we cannot measure all
the contributing elements. Take, for example, predicting the value of the noise current (t)
produced by a thermally excited resistor R. Conceivably, we might accurately predict #(t)
at some instant ¢ in the future if we could keep track, say, of the 1023 or so excited electrons
moving in each other’s magnetic fields and setting up local field pulses that eventually all
contribute to producing i(¢). Such a calculation is quite inconceivable, however, and there-
fore we use a probabilistic model rather than Maxwell’s equations to deal with resistor noise.
Similar arguments can be made for predicting the weather, the outcome of tossing a real
physical coin, the time to failure of a computer, dark current in a CMOS imager, and many
other situations. Thus, we conclude: Regardless of which position one takes, that is, deter-
minism versus indeterminism, we are forced to use probabilistic models in the real world
because we do not know, cannot calculate, or cannot measure all the forces contributing to
an effect. The forces may be too complicated, too numerous, or too faint.

Probability is a mathematical model to help us study physical systems in an average
sense. We have to be able to repeat the experiment many times under the same conditions.
Probability then tells us how often to expect the various outcomes. Thus, we cannot use
probability in any meaningful sense to answer questions such as “What is the probability
that a comet will strike the earth tomorrow?” or “What is the probability that there is life
on other planets?” The problem here is that we have no data from similar “experiments”
in the past.

R. A. Fisher and R. Von Mises, in the first third of the twentieth century, were
largely responsible for developing the groundwork of modern probability theory. The modern
axiomatic treatment upon which this book is based is largely the result of the work by Andrei
N. Kolmogorov [1-2].

1.2 THE DIFFERENT KINDS OF PROBABILITY

There are essentially four kinds of probability. We briefly discuss them here.

Probability as Intuition

This kind of probability deals with judgments based on intuition. Thus, “She will probably
marry him” and “He probably drove too fast” are in this category. Intuitive probability
can lead to contradictory behavior. Joe is still likely to buy an imported Itsibitsi, world
famous for its reliability, even though his neighbor Frank has a 19-year-old Buick that has
never broken down and Joe’s other neighbor, Bill, has his Itsibitsi in the repair shop. Here
Joe may be behaving “rationally,” going by the statistics and ignoring, so-to-speak, his
personal observation. On the other hand, Joe will be wary about letting his nine-year-old
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daughter Jane swim in the local pond, if Frank reports that Bill thought that he might
have seen an alligator in it. This despite the fact that no one has ever reported seeing
an alligator in this pond, and countless people have enjoyed swimming in it without ever
having been bitten by an alligator. To give this example some credibility, assume that the
pond is in Florida. Here Joe is ignoring the statistics and reacting to, what is essentially,
a rumor. Why? Possibly because the cost to Joe “just-in-case” there is an alligator in the
pond would be too high [1-3].

People buying lottery tickets intuitively believe that certain number combinations like
month/day/year of their grandson’s birthday are more likely to win than say, 06-06-06.
How many people will bet even odds that a coin that, heretofore has behaved “fairly,” that
is, in an unbiased fashion, will come up heads on the next toss, if in the last seven tosses it
has come up heads? Many of us share the belief that the coin has some sort of memory and
that, after seven heads, that coin must “make things right” by coming up with more tails.

A mathematical theory dealing with intuitive prgobability was developed by
B. O. Koopman [1-4]. However, we shall not discuss this subject in this book.

Probability as the Ratio of Favorable to Total Outcomes
(Classical Theory)

In this approach, which is not experimental, the probability of an event is computed a priorit
by counting the number of ways ng that E can occur and forming the ratio ng/n, where
n is the number of all possible outcomes, that is, the number of all alternatives to E plus
ng. An important notion here is that all outcomes are equally likely. Since equally likely
is really a way of saying equally probable, the reasoning is somewhat circular. Suppose we
throw a pair of unbiased six-sided dice* and ask what is the probability of getting a 7. We
partition the outcome space into 36 equally likely outcomes as shown in Table 1.2-1, where
each entry is the sum of the numbers on the two dice.

Table 1.2-1 Outcomes of Throwing

Two Dice
1st die

2nddie |1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

tA priori means relating to reasoning from self-evident propositions or prior experience. The related
phrase, a posteriori means relating to reasoning from observed facts.’
t'We will always assume that our dice have six sides.
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The total number of outcomes is 36 if we keep the dice distinct. The number of ways

of getting a 7 is ny = 6. Hence
6 1
Plgetti N===-.
lgetting 2 7] = o = &
Example 1.2-1
(toss a fair coin twice) The possible outcomes are HH, HT, TH, and TT. The probability
of getting at least one tail T is computed as follows: With E denoting the event of getting

at least one tail, the event E is the set of outcomes

E = {HT, TH, TT}.

Thus, event FE occurs whenever the outcome is HT or TH or TT. The number of elements
in F is ng = 3; the number of all outcomes N, is four. Hence
3
Plat least one T] = nE _ 2
n 4
Note that since no physical experimentation is involved, there is no problem in postulating
an ideal “fair coin.” Effectively, in classical probability every experiment is considered
“fair.”

The classical theory suffers from at least two significant problems: (1) It cannot deal
with outcomes that are not equally likely; and (2) it cannot handle an infinite number
of outcomes, that is when n = co. Nevertheless, in those problems where it is impractical
to actually determine the outcome probabilities by experimentation and where, because of
symmetry considerations, one can indeed argue equally likely outcomes, the classical theory
is useful.

Historically, the classical approach was the predecessor of Richard Von Mises’ [1-6]
relative frequency approach developed in the 1930s, which we consider next.

Probability as a Measure of Frequency of Occurrence

The relative frequency approach to defining the probability of an event F is to perform
an experiment n times. The number of times that E appears is denoted by ng. Then it is
tempting to define the probability of E occurring by

PE] = lim “E

n—oo 1

(1.2-1)

Quite clearly since ng < n we must have 0 < P[E] < 1. One difficulty with this approach
is that we can never perform the experiment an infinite number of times, so we can only
estimate P[E] from a finite number of trials. Secondly, we postulate that ng/n approaches
a limit as n goes to infinity. But consider flipping a fair coin 1000 times. The likelihood
of getting exactly 500 heads is very small; in fact, if we flipped the coin 10,000 times, the
likelihood of getting exactly 5000 heads is even smaller. As n — oo, the event of observing



