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Preface

The superconvergence was first studied by Douglas and Dupont®! in 1972. However,
Oganesjan and Ruchovec!'®! had already proved in 1969 that the linear interpolation
on uniform triangular meshes is supercloseness to the finite element solution of sec-
ond order elliptic problems. Since then many papers on superconvergence have been
published. In summary, there are three types of superconvergence: locally pointwise,
average and global. There exist many reports on superconvergence at special points
(i.e., locally pointwise), see Hannukainen et al.l’8), MacKinnon and Carey[18% 182
Nakaol!®l Pehlivanov et al.[!93] Wheeler and Whiteman(?'1] and Wahlbin[207, 208] n
Kiizek and Neittaanmikil!®®, superconvergence on average (or majority) of the nodal
derivative solutions was introduced for Poisson’s equation. The global superconver-
gence over the entire solution domain was proposed in K#izek and Neittaanmakil104,

Lin and Yan['®! and Lin et al.!'®% and the plentiful bibliography on superconvergence
[105]

s

was listed in Kfizek and Neittaanmaki

In Wahlbin(207. 208] 5 systematic analysis of locally pointwise superconvergence was
given to general Galerkin finite elements, based on local error estimates and the Green
functions. The analysis seems to be very complicated, and to suit only for the second

[208] did not cover analysis for the fourth order

order elliptic equations. Wahlbin’s book
elliptic problems, parabolic equations and systems of partial differential equations.
The a posteriori processing is important not only to global superconvergence, see
Lin and Zhul'7! byt also to locally pointwise superconvergence, see Zienkiewicz and
Zhul?43: 241 Babugka and Strouboulis!'!), and Zhang(23% 235, 236]  For derivatives, the
average technique, the integration recovery technique and the derivative patch interpo-
lating recovery technique were proposed in Zhang[?*% and Zhang et al 231, 232, 233] {5,
FEM to reach superconvergence and even ultraconvergence of numerical derivatives
at mesh nodes. For 3D problems, more results on locally pointwise superconvergence

(102] Numerically, one superconvergence phenomenon for 3D

were provided in Kfizek
elastic problems was observed by Xie 215 in 1975,

In general, the finite element methods (FEMSs) are constructed in any partition
finite space. In this book we discuss the rectangular elements, in particular, Adini’s
elements and p-order bi-Lagrange elements, which are constructed in rectangular fi-
nite space, see Lin and Yan[6ll, The special rectangular partitions enable the finite
element solutions more efficient to raise the convergence rates, although the rectan-

gular elements are less flexible than the triangular elements. The convergence rate of
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|lur — ui||; is one or two orders higher than the optimal convergence rates. For post-
processings we construct higher order solutions. Post-processing has the advantage
that it can yield superconvergence result anywhere in the domain and even up to the
boundaries, see 104, 161, 163]. However, post-processing techniques might be a little
expensive because some of the processing has to be done over the whole domain. In
this book we give the a posteriori interpolant formulas of Adini's clements and bi-
quadratic elements to obtain the global superconvergence. The rectangular elements
have the disadvantage that the solution domains are confined to those which can be
decomposed of finite rectangles. This is a limitation for practical application due to
less flexibility. In philosophy, specialization rewards efficiency. Rectangular elements
can yield better superconvergence than triangular elements do, see [161].

The global superconvergence does not display much significance for the triangular
FEMSs, because only linear, quadratic and some cubic elements have been done, based
on the analysis for ||up — uil[1,s in [161]. In contrast, for locally pointwise supercon-
vergence, all high order triangular elements can be analyzed systematically by the
techniques of Wahlbin[?%8l. A remedy for this drawback of global superconvergence
is to combine rectangular elements with triangular elements if necessary as shown in
Lil'4. An important application of superconvergence is for a posteriori estimates
of the numerical solutions obtained, and then for refining the partition to achieve
a required accuracy, see Babuska and Strouboulis!!l. An example of global super-
convergence is given in Li and Yan [1#6]. The global superconvergence in this book
is confined to 2D problems only. For 3D problems, the global superconvergence of
tetrahedral quadratic finite elements is explored in Brandts and Ki{zek!?¥, to reach
O(h?) in H'-norm.

An intrinsic feature of global superconvergence is the requirement of highly smooth
solutions. In the analysis of this book, we need the solutions u € H*(S) for the bi-
linear FEM and the FDM, u € H®(S) for Adini’s elements, and « € H%(S) for
the bi-quadratic elements. A discussion on uv € H3(S) is given in K#izek and Neit-

(104 1t is well known that the solution of Laplace’s equation on a concave

taanmaki
domain satisfies u € H**7(S), where 0 < < 1. Even by the simplest linear elements.
the poor solution with the H'-norm error O(h") can be obtained. Hence, many tech-
niques have been developed to pursue the optimal convergence rate O(h), see Li 114,
The reason for the global superconvergence rates to raise the convergence rates lies
in that the bilinear elements (i.e., low order FEMs) will play a role of bi-quadratic
elements (i.e., high order FEMs), by an a posteriori interpolant of bi-quadratic poly-
nomials (high order interpolants) from the obtained solutions. Hence, the smoothness
of bi-quadratic elements is requested for the bilinear elements in global superconver-
gence, sce Chapter 1. All high order FEMs share the same drawback requirement
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of high regularity of the solution, and so does the global superconvergence. This
book can be, indeed, regarded as a deep analysis in the rectangular elements, e.g.,
bilinear, bi-quadratic and Adini’s elements for Poisson’s equation, and bi-cubic Her-
mite elements for biharmonic equations. Although the requirement of u € H6(S) is
un-realistic, the surprisingly results of bi-quadratic elements may reach the super-
convergence O(h®) in Hl-norm, and O(h*?), 0 < § < 1, in the infinite norm, see
Chapter 3. In general, the solution inside S is highly smooth, and the supercon-
vergence is then valid wherein. When the inside subdomain is vast, a combination
may be employed to retain the same superconvergence, see Chapters 1, 4, 8 and 10.
Such a situation is just analogous to the case of the combined methods for singularity
problems, see Lil'*4.

Several books on global superconvergence were written, e.g., Lin and Yan[161]
with the updated version Yan®?l, Chen and Huangl*!!, Chen/# Lin and Zhull™,
Zhu and Lin®*? Yang(??¥], and Lin and Lin*3¥l, to provide wide theoretical results
of global superconvergence. Recently, new developments of global superconvergence
in both theory and application are reported in [24, 29, 43, 106, 158, 159, 160, 162,
166, 167, 168, 169, 172, 173, 174, 175, 240, 241]. More references on the global
superconvergence are provided in Yan??9 and Ki{zek and Neittaanmikill®3. In this
book some important literature may not be mentioned, for it we apologize in advance.

Our study on superconvergence has been greatly influenced by [154, 161}, and this
book is a further development of [154, 161]. Compared with [154, 161], this book has
several different features.

(1) We report new discoveries of global superconvergence for Poisson’s equation
and biharmonic equation, eigenvalue problems and semilinear problems. The mate-
rials in this book are mainly summarized from our recent journal papers published
in [45, 86, 88, 91, 92, 93, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 129, 130,
131, 132, 133, 140, 141, 145, 146, 147, 221]. Only the most important results of global
superconvergence in both theory and numerical verification are covered in this book.

(2) For the basic theory of global superconvergence, deeper and rather completed
results are explored in Chapters 2, 3, 6, 9, etc., which are important to practical
applications. Besides, the superconvergence of finite difference method is also pro-
vided in Chapter 5, where the discrete H'-norms are used, which is similar to global
superconvergence, and can also be viewed as the average superconvergence.

(3) The global superconvergence can be applied to singularity problems by the
combined method in Lil'' and reported in Chapter 1 and Chapter 4. The cou-
pling techniques in [114] are employed in Chapters 1, 4, 7, 8 and 10. The periodical
boundary conditions and the semilinear problems are also stydied by global super-
convergence in Chapter 10 and Chapter 11.
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(4) Numerical examples of models and application problems are provided. to verify
the superconvergence and to display its significance in computation.

(5) The description of all chapters except Chapter 12 is problein-oriented. and cach
chapter can be regarded as an independent study. In fact, each chapter is adapted
from one to several published papers. In general. the proofs in the error bounds
for global superconvergence are tedious, based on repeated integration by parts. Qur
efforts are paid to seek rather simple proofs which arc easy for others to follow. Hence.
reader may read one’s interested chapters without reading the entire book. It is our
hope that the techniques and results of global superconvergence in this book may be
extended to more problems in application.

A brief chapter-by-chapter description is given as follows.

Chapter 1 is an introduction to discuss the bilinear clements combined with the
Ritz-Galerkin method using the singular solutions, to solve the Poisson equation with
singularities. The simplified hybrid techniques are employed, to couple two methods
along their common boundary, and the global supercloscness O(h?7%), 0 < § < 1,
is derived, where h is the maximal meshspacing of quasiuniforiu rectangles used. By
means of an a posteriori interpolation. the global superconvergence O(h?~%) can also
be achieved. This chapter presents a basic approach. to expose the global superconver-
gence and its application. Since the rectangular elements are not flexible, they should
be combined with other methods, e.g., the triangular elements for rather arbitrary
domains, or the singular functions for singularity problems.

In Chapters 2—5. as a fundamental level. we consider the Poissou equation by
Adini’s elements and the bi-quadratic Lagrange clements in Chapters 2—4. and by
the finite difference method in Chapter 5.

Chapter 2 discusses new error estimates of Adini’s elements for the Neuwmann
problems of Poisson’s equation. A new technique is given for the Neumann bound-
ary problem, and new a posteriori interpolant polynomials of Adinis elements are
provided which are the important posterior steps of global supcrconvergence.

Chapter 3 achieves new error estimates of biquadratic Lagrange elements for Pois-
son’s equation (i.e., —Au = f). The a posteriori interpolant polynomials with order
six of the point-line-area variables are found. Moreover. by using the a posteriori
interpolant with order six. the global superconvergence of biquadratic Lagrange cle-
ments may achieve O(h®) in H'-norm and O(h®) in L?-norm high. under the case of
fewyy = 0 and h = k, where h and k are the boundary lengths of uniform rectangles
Oij. When fezy, # 0, the same high global superconvergences may be retained by
the extrapolation technique. The numerical results verifv supercloseness O(h?) and
O(h®), global superconvergence O(h®) in H'-norm and the high convergence rates
O(h%|Inh]) = O(h5~¢), 0 < € < 1 in the infinity norm.
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Chapter 4 is a continued study of Chapter 1 for the simplified hybrid combinations
of the Ritz-Galerkin method and finite element methods. In Chapter 1. a basic error
theorem is derived for the solution, which leads to superconvergence rates on the entire
solution domain; however, only bilinear elements are discussed. In this chapter, we
intend to achieve high global superconvergence by using high order Lagrange FEMs
and Adini’s elements in the regular subdomain.

Chapter 5 explores the superconvergence of the average nodal derivates of the
finite difference method (FDM). Consider the singular boundary, where the Poisson

1 .
solution is expressed as u = O(z7), 3 <o < 2,asz — 0. By using a local refinement

of difference grids near the axis y, the superconvergence [[u — uy|[, = O(h?) can also
be reached, where Hl is the discrete H!-norm, h is the maximal meshspacing of the
difference grids, and us is the FDM solution. Since the norm Jju — u||; and |lu; —
up|1,5 are equivalent to each other (see Lil'!¥), where u; is the bilinear interpolant of
u, the superconvergence of average nodal derivatives in Chapter 5 may be classified
into global superconvergence.

In Chapters 6—9, as an advanced level of global superconvergence, we discuss
the biharmonic equations with different boundary conditions by the bi-cubic Hermite
functions on rectangular elements. More mathematical arguments, which are basi-
cally of the integration computation in calculus, are needed due to complexity of the
biharmonic equations. In Chapters 6—8, the basic error estimates, stability and ap-
plication of blending surfaces are explored. In Chapter 9, the eigenvalues of Laplace’s
operator are explored by nonconforming elements in Lin and Lin [154] with the focus
of lower bounds.

Chapter 6 develops the basic error estimates in detail. The useful techniques for
integration evaluation are illustrated, and easily understood. In Lin and Yan [161],
the error estimates were given only for the clamped boundary condition. In this chap-
ter, other popular boundary conditions, such as the simply supported condition, the
natural condition and the symmetric condition are also discussed. The new global su-
perconvergence has been verified by the numerical experiments, to provide a complete
knowledge of the bi-cubic Hermite elements.

Chapter 7 makes a stability analysis for the blending problems by the bi-cubic
Hermite elements with the hybrid plus penalty coupling for periodical boundary con-
dition. The bounds of the condition number, Cond(A) = Amax(A)/Amin(A4), are
derived, where A is the associated matrix, which is symmetric and positive definite,
and Amax(A) and Amin(A) are the maximal and the minimal eigenvalues of matrix
A, respectively.

Chapter 8 applies the bi-cubic Hermite elements in Chapter 6 to the blending
surfaces by using some coupling techniques in Li [114], to match the surfaces to the
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outside boundary, which may be complicated. The analysis of this chapter displays
that not only is the global superconvergence retained, but also a better stability can
be achieved. This chapter also demonstrates a flexibility of global superconvergence
in practical applications.

Chapter 9 explores new expansions of eigenvalues for —Au = Apu in S with the
Dirichlet boundary condition u = 0 on 95, by the bilinear element(denoted Q)
and three nonconforming elements: the rotated bilinear element (denoted Q5°t), the
extension of Qi°* (denoted FQ°*) and Wilson’s element. The expansions indicate
that @; and Q°* provide upper bounds of the eigenvalues, and that EQ°* and
Wilson’s elements provide lower bounds of the eigenvalues. By the extrapolation, the
O(h*) convergence rate can be obtained, where h is the boundary length of uniform
rectangles. Since upper bounds of eigenvalues are always obtained from conforming
elements, low bounds of eigenvalues from EQ}°* and Wilson’s element are interesting
and important in application.

Chapter 10 and Chapter 11 apply the basic superconvergence to important applica-
tion problems in physics and engineering. Chapter 10 applies the Adini’s elements for
nonlinear Schrédinger equations (NLS) defined in a square box with periodic bound-
ary conditions. First, Adini’s elements are applied to Laplace’s eigenvalue problems
in the unit square with periodical boundary conditions, and the leading eigenvalues
are obtained from the Rayleigh quotient. The coupling techniques are developed to
copy with periodical boundary conditions, and superconvergence is also explored for
leading eigenvalues. The optimal convergence O(h®) of leading eigenvalues is obtained

(10, 204] " When the uniform rectangular elements are used,

for quasi-uniform elements
the superconvergence O(h®*?) with p = 1 or p = 2 of leading eigenvalues is proved,
where h is the boundary length of Adini’s elements.

Chapter 11 studies finite element approximations for positive solutions of semilin-
ear elliptic eigenvalue problems with folds, to explore the superconvergence of finite
element methods (FEMs). To apply the superconvergence of FEM for Poisson’s equa-
tion in Chapters 2, 3 and 5 to parameter-dependent problems with folds, this chapter
provides the framework of error analysis, accompanied with the proof of the strong
monotonicity of the nonlinear problem. It is worthy pointing out that the super-
convergence of nonlinear problems in this chapter is different from that in Chen and
Huang!ll. A continuation algorithm is described to trace solution curves of semilin-
ear elliptic eigenvalue problems, where Adini’s elements are employed to discretize
the PDEs.

The last Chapter 12 states the basic ideas and proof techniques of global supercon-
vergence with bilinear elements, and supmaries important results of integral identity
analysis and global superconvergence for general equations by different elements. The



Preface vii

description of Chapters 1—11 is problem-oriented; the summary of this chapter is
method-oriented. Hence, the techniques and results of global superconvergence may

be extended to more problems of wide applications.

Zi-Cai Li
Hung-Tsai Huang
Ningning Yan

March 2011
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Chapter 1
Basic Approaches

To solve the elliptic boundary value problems with singularities, the simplified hy-
brid combinations of the Ritz-Galerkin and finite element methods (simply written as
RGM-FEM) are explored, and the global superconvergence rates are derived on the
entire solution domain, based on a posteriori interpolation techniques of global su-
perconvergence (see Chapter 12), which only cost a little more computation. Let the
solution domain be divided by Iy into two subdomains S; and Ss: S = S U S; U [
and S; NS, = &. Suppose that S; can be partitioned into quasiuniform rectangles:
S = Z O;;, a singular point occurs at 055, and the singular functions are chosen in
Ss. Thjen for bilinear elements, it is proven that the simplified hybrid combinations
of RGM-FEM can provide the global superconvergence rate O(h%7%), 0 < § < 1
for solution gradients over the entire subdomains S; and S;, where h is the maxi-
mal boundary length of OJ;;. Note that numerical stability of the simplified hybrid

101211 This chapter presents the important

combinations of RGM-FEM is also optima
results for the general case of Poisson-problems on a polygonal domain S, where the
error estimates for the Sobolev norm || - ||; are given in a much more general sense
than known before, cf. [52, 103, 104, 113, 182, 189, 195, 207, 211]. The materials of

this chapter are adapted from {117].

1.1 Introduction

In this chapter, the global superconvergence rates of solution gradients on the entire
solution domain are established by combinations of the Ritz-Galerkin and finite el-
ement methods (RGM-FEM). There exist many reports on superconvergence, such
as Kffzek and Neittaanmikil!0% 104 MacKinnon and Carey!82], Nakao!!89], Pekhli-
vanov et al.l'?) Wahlbin{20”! and Wheeler and Whiteman2!1). Most of them deal
with superconvergence at specific points. In this chapter, the global superconvergence
rates are obtained over the entire region, based on a posteriori interpolation of the
numerical solutions proposed by Lin and his colleagues(!4% 161, 165, 220] ' gee Chapter
12.

A recent study on superconvergence in combinations is reported in [113]. where



