IEMFRIATNT (FEkR)

Introducing

Regular

O’REILLY"

% % Wit Michael Fitzgerald %

Regular
Expressions

M FIEXNIT] wam

Introducing Regular Expressions

Michael Fitzgerald

O’REILLY"

Beijing - Cambridge - Farnham - Kéln - Sebastopol - Tokyo
O’Reilly Media, Inc. A% &) K 5 i B+ BR

REIRF ARt

EBER&E (CIP) iR

EMFEERA T #(FE)FERALAE (Fitzgerald, M.)
% A . —m: R RE R, 20131

45483 Introducing Regular Expression

ISBN 978-7-5641-3891-2

I. ®F- I ©FE-- 1. OEMFER - EX
IV. ® TP301.2

H A B 450 CIP il d% = (2012) 58 273548 %5

TL I E BB VEAL A R ID
E%. 10-2012-163 2

©2012 by O’Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Southeast University Press,
2013. Authorized reprint of the original English edition, 2012 O’Reilly Media, Inc., the owner of all rights
to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
3% & B d O’Reilly Media, Inc. & #& 2012,

YR W A kg kAR B BR 2013, 3b ¥ EP RR 69 b RAAe 4N 4B AT 2] pAR A 4K B A E BT AT & —— O’Reilly
Media, Inc. #5# °T ,

MAHTA , KA EET, A4 OGEANT I o Fe &R VUETH XEH .

EMZEERAIT GZER)

HAR & AT ZREEKRZ R

Hb HE: FEICPURERE 2 5 M4 : 210096
O A iR

%] Hik . http://www.seupress.com

HLFHB{4: . press@seupress.com

EN Fill: 4 T EDRIA PR 2 =]

. T8T Z K x 980 Z K 16 FF A

: 9.5

: 186 T

: 20134 1 A 1 iR

: 201345 1 A% 1 RENRI

: ISBN 978-7-5641-3891-2

: 38.005¢ (M)

AL EBE AN RNE, 5 EESEHRR, BiE (FH). 025-83791830

HEIFHIH
S odo ¥ N R B

PrefaCe: o v o s 5 s 8 50 s 500 5 o0 8 6 908 3 80 8 8083 % 800 8 s

1.

What Is a Regular Expression?
Getting Started with Regexpal

Matching a North American Phone Number
Matching Digits with a Character Class
Using a Character Shorthand

Matching Any Character

Capturing Groups and Back References
Using Quantifiers

Quoting Literals

A Sample of Applications

What You Learned in Chapter 1

Technical Notes

Simple Pattern Matching
Matching String Literals
Matching Digits
Matching Non-Digits
Matching Word and Non-Word Characters
Matching Whitespace
Matching Any Character, Once Again
Marking Up the Text
Using sed to Mark Up Text
Using Perl to Mark Up Text
What You Learned in Chapter 2
Technical Notes

Boundariesoviiiiiriiiiriiineinn..

The Beginning and End of a Line
Word and Non-word Boundaries

Table of Contents

.............................. 1

— = O 00O UL NN

—_

............................. 13

15
15
17
18
20
22
24
24
25
27
27

............................ 29
29
31

Other Anchors 33

Quoting a Group of Characters as Literals 34
Adding Tags 34
Adding Tags with sed 36
Adding Tags with Perl 37

What You Learned in Chapter 3 38
Technical Notes 38

4. Alternation, Groups, and Backreferencesoooviiiiiniiiiiiiiiiinn 4
Alternation 41
Subpatterns 45
Capturing Groups and Backreferences 46
Named Groups 48
Non-Capturing Groups 49
Atomic Groups 50

What You Learned in Chapter 4 50
Technical Notes 51

5. CHATacter CIASSes . .. ooswesmsossms s maans @enn s s on s s s o s mses o5 e s 53
Negated Character Classes 55
Union and Difference 56
POSIX Character Classes 56
What You Learned in Chapter 5 59
Technical Notes 60

6. Matching Unicode and Other Charactersoooiiiiiiiiiiiiinan., 61
Matching a Unicode Character 62
Using vim 63
Matching Characters with Octal Numbers 64
Matching Unicode Character Properties 65
Matching Control Characters 68
What You Learned in Chapter 6 70
Technical Notes 71

7. QUaNtfiersoouuiiiiniiiiii i e 73
Greedy, Lazy, and Possessive 74
Matching with *, +, and ? 74
Matching a Specific Number of Times 75
Lazy Quantifiers 76
Possessive Quantifiers 77
What You Learned in Chapter 7 78
Technical Notes 79

iv | Table of Contents

8. LOOKATOUNMS ..o veneeeeeeeeteeeaneaneansensensecnssssenesnssensannans 81

Positive Lookaheads 81
Negative Lookaheads 84
Positive Lookbehinds 85
Negative Lookbehinds 85
What You Learned in Chapter 8 86
Technical Notes 86

9. Marking UpaDocumentwithHTMLooiiiiiiiiiiiiiiiiiiiiinnn, 87
Matching Tags 87
Transforming Plain Text with sed 88
Substitution with sed 89
Handling Roman Numerals with sed 90
Handling a Specific Paragraph with sed 91
Handling the Lines of the Poem with sed 91
Appending Tags 92
Using a Command File with sed 92
Transforming Plain Text with Perl 94
Handling Roman Numerals with Perl 95
Handling a Specific Paragraph with Perl 96
Handling the Lines of the Poem with Perl 96

Using a File of Commands with Perl 97

What You Learned in Chapter 9 98
Technical Notes 98

10. TheEndoftheBeginningcoouiiiiiriiiiiiiiiiieineneenenanns 101
Learning More 102
Notable Tools, Implementations, and Libraries 103

Perl 103

PCRE 103

Ruby (Oniguruma) 104

Python 104

RE2 105
Matching a North American Phone Number 105
Matching an Email Address 105
What You Learned in Chapter 10 106
Appendix: Regular Expression Referencecovvuiinieniiiieiiinennennns 107
Regular Expression GIOSSaryoeeeuunieuiineeunieeineeeinnrennnnenns 123
PVEIC ¢ oo i w3 0 i e 0 4 0 0 0 5 5 O 0 6 5 A 58 5 129

Table of Contents | v

 CHAPTERT
What Is a Reqular Expression?

Regular expressions are specially encoded text strings used as patterns for matching
sets of strings. They began to emerge in the 1940s as a way to describe regular languages,
but they really began to show up in the programming world during the 1970s. The
first place I could find them showing up was in the QED text editor written by Ken
Thompson.

“A regular expression is a pattern which specifies a set of strings of characters; it is said

to match certain strings.” —Ken Thompson
Regular expressions later became an important part of the tool suite that emerged from
the Unix operating system—the ed, sed and vi (vim) editors, grep, AWK, among others.
But the ways in which regular expressions were implemented were not always so
regular.

This book takes an inductive approach; in other words, it moves from
< the specific to the general. So rather than an example after a treatise,
[.LT; you will often get the example first and then a short treatise following
" that. It’s a learn-by-doing book.

Regular expressions have a reputation for being gnarly, but that all depends on how
you approach them. There is a natural progression from something as simple as this:

\d

a character shorthand that matches any digit from 0 to 9, to something a bit more
complicated, like:
AONA\A{3I) [M\d{3}[.-]?)?2\d{3}[.-]?\d{4}$

which is where we'll wind up at the end of this chapter: a fairly robust regular expression
that matches a 10-digit, North American telephone number, with or without paren-
theses around the area code, or with or without hyphens or dots (periods) to separate
the numbers. (The parentheses must be balanced, too; in other words, you can’t just
have one.)

s)
- Chapter 10 shows you a slightly more sophisticated regular expression

:,‘. for a phone number, but the one above is sufficient for the purposes of
0N .
~ Glar this chaprer.

If you don’t get how that all works yet, don’t worry: I'll explain the whole expression
a little at a time in this chapter. If you will just follow the examples (and those through-
out the book, for that matter), writing regular expressions will soon become second
nature to you. Ready to find out for yourself?

[at times represent Unicode characters in this book using their code point—a four-
digit, hexadecimal (base 16) number. These code points are shown in the form
U+0000. U+002E, for example, represents the code point for a full stop or period (.).

Getting Started with Regexpal

First let me introduce you to the Regexpal website at http://www.regexpal.com. Open
the site up in a browser, such as Google Chrome or Mozilla Firefox. You can see what
the site looks like in Figure 1-1.

You can see that there is a text area near the top, and a larger text area below that. The
top text box is for entering regular expressions, and the bottom one holds the subject
or target text. The target text is the text or set of strings that you want to match.

& a
W‘—' At the end of this chapter and each following chapter, you'll find a
fs “Technical Notes” section. These notes provide additional information
~* s} about the technology discussed in the chapter and tell you where to get
" more information about that technology. Placing these notes at the end
of the chapters helps keep the flow of the main text moving forward

rather than stopping to discuss each detail along the way.

Matching a North American Phone Number

Now we’ll match a North American phone number with a regular expression. Type the
phone number shown here into the lower section of Regexpal:

707-827-7019
Do you recognize it? It’s the number for O’Reilly Media.

Let’s match that number with a regular expression. There are lots of ways to do this,
but to start out, simply enter the number itself in the upper section, exactly as it is
written in the lower section (hold on now, don’t sigh):

707-827-7019

2 | Chapter1: Whatlsa Regular Expression?

800

€« — C () regexpal.com

. “Regex Tester - RegexPal il -

Help Version History Feedback Book

["é&f}” rege xpal 0.1.4 — a.JavaScript regular expression tester
A Case insensitive (/| A$ match at line breaks (m) Dot matches all (s via XRegExp) Options Quick Reference

Need more power? Get RegexBuddy from JGsoft. a powerful regex tester & budder that nspred many of RegexPals features

| " |

Figure 1-1. Regexpal in the Google Chrome browser

What you should see is the phone number you entered in the lower box highlighted
from beginning to end in yellow. If that is what you see (as shown in Figure 1-2), then
you are in business.

When I mention colors in this book, in relation to something you might
see in an image or a screenshot, such as the highlighting in Regexpal,
i+ those colors may appear online and in e-book versions of this book, but,
" alas, not in print. So if you are reading this book on paper, then when I
mention a color, your world will be grayscale, with my apologies.

What you have done in this regular expression is use something called a string literal
to match a string in the target text. A string literal is a literal representation of a string.

Now delete the number in the upper box and replace it with just the number 7. Did
you see what happened? Now only the sevens are highlighted. The literal character
(number) 7 in the regular expression matches the four instances of the number 7 in the
text you are matching. '

Matching a North American Phone Number | 3

| b
r

|
890 . 'Regex Tester - RegexPal

« C () regexpal.com &P

| “5_2(;]"7- regexpal o.1.4 — aJavaScript regular expression tester Help = Version History = Feedback ' Book | Blog

® Case insensitive A% match at line breaks Dot matches all (s vis XRegExp) Options Quick Reference

@» Permalink

|
Noed more power? Get RagexBuddy from JGsoft, a powerful regex tester & builder that inspired many of RegexPals features |

Figure 1-2. Ten-digit phone number highlighted in Regexpal

Matching Digits with a Character Class

What if you wanted to match all the numbers in the phone number, all at once? Or
match any number for that matter?

Try the following, exactly as shown, once again in the upper text box:
[0-9]

All the numbers (more precisely digits) in the lower section are highlighted, in alter-
nating yellow and blue. What the regular expression [0-9] is saying to the regex pro-
cessor is, “Match any digit you find in the range 0 through 9.”

The square brackets are not literally matched because they are treated specially as
metacharacters. A metacharacter has special meaning in regular expressions and is re-
served. A regular expression in the form [0-9] is called a character class, or sometimes
a character set.

4 | Chapter1: Whatlsa Regular Expression?

You can limit the range of digits more precisely and get the same result using a more
specific list of digits to match, such as the following:
[012789]
This will match only those digits listed, thatis, 0, 1, 2, 7, 8, and 9. Try it in the upper
box. Once again, every digit in the lower box will be highlighted in alternating colors.
To match any 10-digit, North American phone number, whose parts are separated by
hyphens, you could do the following:
[0-9][0-9][0-9]-[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]
This will work, but it’'s bombastic. There is a better way with something called a
shorthand.

Using a Character Shorthand

Yet another way to match digits, which you saw at the beginning of the chapter, is with
\d which, by itself, will match all Arabic digits, just like [0-9]. Try that in the top section
and, as with the previous regular expressions, the digits below will be highlighted. This
kind of regular expression is called a character shorthand. (It is also called a character
escape, but this term can be a little misleading, so I avoid it. I'll explain later.)

To match any digit in the phone number, you could also do this:
\d\d\d-\d\d\d-\d\d\d\d
Repeating the \d three and four times in sequence will exactly match three and four

digits in sequence. The hyphen in the above regular expression is entered as a literal
character and will be matched as such.

What about those hyphens? How do you match them? You can use a literal hyphen (-)
as already shown, or you could use an escaped uppercase D (\D), which matches any
character that is not a digit.
This sample uses \D in place of the literal hyphen.

\d\d\d\D\d\d\d\D\d\d\d\d
Once again, the entire phone number, including the hyphens, should be highlighted
this time.

Matching Any Character
You could also match those pesky hyphens with a dot (.):
\d\d\d.\d\d\d. \d\d\d\d

The dot or period essentially acts as a wildcard and will match any character (except,
in certain situations, a line ending). In the example above, the regular expression
matches the hyphen, but it could also match a percent sign (%):

Matching Any Character | 5

707%827%7019

Or a vertical bar ():
707|827|7019

Or any other character.

o -

e As I mentioned, the dot character (officially, the full stop) will not nor-
:‘:. mally match a new line character, such as a line feed (U+000A). How-

4 ever, there are ways to make it possible to match a newline with a dor,
" which I will show you later. This is often called the dotall option.

Capturing Groups and Back References

You’ll now match just a portion of the phone number using what is known as a cap-
turing group. Then you’ll refer to the content of the group with a backreference. To
create a capturing group, enclose a \d in a pair of parentheses to place it in a group,
and then follow it with a \1 to backreference what was captured:

(\d)\d\1
The \1 refers back to what was captured in the group enclosed by parentheses. As a
result, this regular expression matches the prefix 707. Here is a breakdown of it:
* (\d) matches the first digit and captures it (the number 7)

* \d matches the next digit (the number 0) but does not capture it because it is not
enclosed in parentheses

* \1 references the captured digit (the number 7)

This will match only the area code. Don’t worry if you don’t fully understand this right
now. You'll see plenty of examples of groups later in the book.

You could now match the whole phone number with one group and several
backreferences:

(\d)o\1\D\d\d\1\D\1\d\d\d

But that’s not quite as elegant as it could be. Let’s try something that works even better.

Using Quantifiers
Here is yet another way to match a phone number using a different syntax:
\d{3}-2\d{3}-?\d{4}

The numbers in the curly braces tell the regex processor exactly how many occurrences
of those digits you want it to look for. The braces with numbers are a kind of quanti-
fier. The braces themselves are considered metacharacters.

6 | Chapter1: Whatlsa Regular Expression?

The question mark (?) is another kind of quantifier. It follows the hyphen in the regular

expression above and means that the hyphen is optional—that is, that there can be zero

or one occurrence of the hyphen (one or none). There are other quantifiers such as the

plus sign (+), which means “one or more,” or the asterisk (*) which means “zero or

more.”

Using quantifiers, you can make a regular expression even more concise:
(\d{3,4}[.-]?)+

The plus sign again means that the quantity can occur one or more times. This regular

expression will match either three or four digits, followed by an optional hyphen or

dot, grouped together by parentheses, one or more times (+).

Is your head spinning? I hope not. Here’s a character-by-character analysis of the regular
expression above:

* (open a capturing group

* \ start character shorthand (escape the following character)

* dend character shorthand (match any digit in the range 0 through 9 with \d)

* { open quantifier

* 3 minimum quantity to match

* , separate quantities

* 4 maximum quantity to match

* } close quantifier

* [open character class

* . dotor period (matches literal dot)

* - literal character to match hyphen

*] close character class

* ? zero or one quantifier

*) close capturing group

* +one or more quantifier
This all works, but it’s not quite right because it will also match other groups of 3 or 4
digits, whether in the form of a phone number or not. Yes, we learn from our mistakes
better than our successes.
So let’s improve it a little:

(\d{3}[.-12){2}\d{4}

This will match two nonparenthesized sequences of three digits each, followed by an
optional hyphen, and then followed by exactly four digits.

Using Quantifiers | 7

Quoting Literals

Finally, here is a regular expression that allows literal parentheses to optionally wrap
the first sequence of three digits, and makes the area code optional as well:

OB ["\d{3}[.-]12)?\d{3}[.-]?\d{4}$

To ensure that it is easy to decipher, I'll look at this one character by character, too:

A (caret) at the beginning of the regular expression, or following the vertical bar
(]), means that the phone number will be at the beginning of a line.

(opens a capturing group.

\(is a literal open parenthesis.

\d matches a digit.

{3} is a quantifier that, following \d, matches exactly three digits.
\) matches a literal close parenthesis.

| (the vertical bar) indicates alternation, that is, a given choice of alternatives. In
other words, this says “match an area code with parentheses or without them.”

~ matches the beginning of a line.

\d matches a digit.

{3} is a quantifier that matches exactly three digits.
[.-]1? matches an optional dot or hyphen.

) close capturing group.

? make the group optional, that is, the prefix in the group is not required.
\d matches a digit.

{3} matches exactly three digits.

[.-1? matches another optional dot or hyphen.

\d matches a digit.

{4} matches exactly four digits.

$ matches the end of a line.

This final regular expression matches a 10-digit, North American telephone number,
with or without parentheses, hyphens, or dots. Try different forms of the number to
see what will match (and what won’t).

¥ o
\

The capturing group in the above regular expression is not necessary.
The group is necessary, but the capturing part is not. There is a better

4' way to do this: a non-capturing group. When we revisit this regular
expression in the last chapter of the book, you’ll understand why.

8 | Chapter1: Whatlsa Regular Expression?

A Sample of Applications

To conclude this chapter, I'll show you the regular expression for a phone number in
several applications.
TextMate is an editor that is available only on the Mac and uses the same regular

expression library as the Ruby programming language. You can use regular expressions
through the Find (search) feature, as shown in Figure 1-3. Check the box next to Regular

expression.

ug‘nn il b - . i e : ¢ orm-phonetxt. e
1| 707-827-7019 -
[

|

i

1

‘ BO00 e = o IO i

i | Find: [AOLOABIVIMABIL - ABH-TNAI41S J[E |
| mestace [- = - "iz !

@chullr expression || Ignore case gWrnpamund |
| i Selection | | Replace | | Replace & Find | [previous | []

|
|
|

| Une: 1 Column: 13 @ AsciiDoc PO Tabsize 4 : —

Figure 1-3. Phone number regex in TextMate

Notepad++ is available on Windows and is a popular, free editor that uses the PCRE
regular expression library. You can access them through search and replace (Fig-
ure 1-4) by clicking the radio button next to Regular expression.

Oxygen is also a popular and powerful XML editor that uses Perl 5 regular expression
syntax. You can access regular expressions through the search and replace dialog, as
shown in Figure 1-5, or through its regular expression builder for XML Schema. To use
regular expressions with Find/Replace, check the box next to Regular expression.

A Sample of Applications | 9

[C\Users\miketz\code\orm-phone.bt - Notepad + « s
Fle B4 Sewcn Y Encoding Lamguige Setegs Wsco Rus Plagms Winde -
s B 5D A B et 2 BT D e e B e

E om phone bt
1 107-827-7019

Frd[Resecn [Fodnrea ek | o

Fndwhat: ~(\(8{SIVI WAL 17 e(sis

Mateh whole word aniy

[Match case

@ wrap sround

Search Mode owecton
) Normal w
 Extended (0. ¥, . W, W...) @ Down

| @ Regu expresson 1] matches nevine

jength:12 fnes:1 tn:l Col:13 Sel:0 Dot Windows ANSI NS

Figure 1-4. Phone number regex in Notepad++

=] ic oh - <oXygen/> XML Editor = = 3
[Fie ean Find Project Options Tooks Document Window Help (=)
DE @M QR) > oo - o -
= . B et il Ll BLBe ENBE BB oS ~
e))) el
[R
B FedRepece || 0z
Tetiofne: Q.
FoeaEre e s | st
. S] (e
Reglace vtz Q. [t] |
|]] |
l | ‘
I
s ke o rm phore 140000 1o

Figure 1-5. Phone number regex in Oxygen

This is where the introduction ends. Congratulations. You’ve covered a lot of ground
in this chapter. In the next chapter, we’ll focus on simple pattern matching,.

10 | Chapter1: Whatlsa Regular Expression?

