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Comparison Tests
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Sequences and
Infinite Series

Ch&p ter Preview This chapter covers topics that lie at the foundation of
calculus—indeed, at the foundation of mathematics. The first task is to make a clear dis-
tinction between a sequence and an infinite series. A sequence is an ordered /ist of num-
bers, ay, a,, ..., while an infinite series is a sum of numbers, a; + a, + - --. The idea of
convergence to a limit is important for both sequences and series, but convergence is ana-
lyzed differently in the two cases. To determine limits of sequences, we use the same tools
used for limits at infinity of functions. Convergence of infinite series is a different matter,
and we develop the required methods in this chapter. The study of infinite series begins
with the ubiquitous geometric series; it has theoretical importance and it is used to answer
many practical questions (When is your auto loan paid off? How much antibiotic do you
have in your blood if you take three pills a day?). We then present several tests that
are used to determine whether series with positive terms converge. Finally, alternating
series, whose terms alternate in sign, are discussed in anticipation of power series in the
next chapter.

9.1 An Overview

Keeping with common practice, the
terms series and infinite series are used

interchangeably throughout this chapter.

The dots (... ) after the last number
(called an ellipsis) mean that the list
goes on indefinitely.

To understand sequences and series, you must understand how they differ and how they
are related. The purposes of this opening section are to introduce sequences and series
in concrete terms and to illustrate their differences and their crucial relationships with
each other.

Examples of Sequences

Consider the following /ist of numbers:
{1,4,7,10,13, 16,...}

Each number in the list is obtained by adding 3 to the previous number. With this rule, we
could extend the list indefinitely.

This list is an example of a sequence, where each number in the sequence is called a
term of the sequence. We denote sequences in any of the following forms:

{alsa:’va}a-"aam"'} {an}r(rx;l {an}

The subscript n that appears in a, is called an index, and it indicates the order of terms in
the sequence. The choice of a starting index is arbitrary, but sequences usually begin with
n=0orn=1
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| Find a,, for the
sequence {1,4,7,10, ... } using the
recurrence relation and then again
using the explicit formula for the
nth term. «

» When defined by an explicit formula
a, = f(n), it is evident that sequences
are functions. The domain is the set of
positive, or nonnegative, integers, and
one real number a,, is assigned to each
integer in the domain.

a, A
0.6 4. =L 1
1 ¢! 2 a, =
04+ 1
+ G =3
d 1
02+ b, =
1 . 3 8
[ ]
Of 1 2 3 45 6 7 8 n
FIGURE 9.1

» The “switch” (—1)" is used frequently
to alternate the signs of the terms of
sequences and series.

The sequence {1,4,7,10,...} can be defined in two ways. First, we have the rule
that each term of the sequence is 3 more than the previous term; that is, a, = a, + 3,
ay; = a, + 3,a, = ay + 3, and so forth. In general, we see that

a=1 and a,, =a, t+ 3, forn =1,2,3,....

This way of defining a sequence is called a recurrence relation (or an implicit formula).
It specifies the initial term of the sequence (in this case, @, = 1) and gives a general rule
for computing the next term of the sequence from previous terms. For example, if you
know a,, the recurrence relation can be used to find a,,.

Suppose instead you want to find a4, directly without computing the first 146 terms

of the sequence. The first four terms of the sequence can be written
a=1+30), a=1+(3-1), a; =1+ (3-2), ag =1+ (3-3).
Observe the pattern: The nth term of the sequence is 1 plus 3 multiplied by n — 1, or
a,=1+3n—-1)=3n-2, forn = 1,2,3,...

With this explicit formula, the nth term of the sequence is determined directly from the
value of n. For example, with n = 147,

g =3+147 = 2 = 439,

——

p T
DEFINITION Sequence
A sequence {a,} is an ordered list of numbers of the form
{al,az,a_;, RPERIY / S }

A sequence may be generated by a recurrence relation of the form a,., = f(a,),
forn = 1,2,3,..., where q, is given. A sequence may also be defined with an
explicit formula for the nth term in the form a, = f(n),forn = 1,2,3,....

EXAMPLE 1 Explicit formulas Use the explicit formula for {a,},~, to write the first
four terms of each sequence. Sketch a graph of the sequence.

1 (—1)"n
a.a,,=§ b.a,,=n2+1
SOLUTION

L . . 1 -
a. Substituting n = 1,2, 3,4,...into the explicit formula a, = ? we find that the terms

11l J-fiirl )
292 ¥ ¥ 24816

The graph of a sequence is like the graph of a function that is defined only on a set of
integers. In this case, we plot the coordinate pairs (n, a,) forn = 1,2, 3, ..., resulting

of the sequence are

in a graph consisting of individual points. The graph of the sequence ¢, = — suggests

1
A
that the terms of this sequence approach 0 as » increases (Figure 9.1).
b. Substituting n = 1,2,3,4,...into the explicit formula, the terms of the sequence are

P+1'24+1"324+1"42+1"




S}

a, =

041 o ; o =2
a n-+ 1

g I
4

L o
e
EsS
el
=N
o -+
e
®co +

FIGURE 9.2

In Example 3, we chose the starting
index to be n = 0. Other choices
are possible.

=+ e

=Y
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From the graph (Figure 9.2), we see that the terms of the sequence alternate in sign
and appear to approach 0 as n increases. Related Exercises 9-12 <

EXAMPLE 2 Recurrence relations Use the recurrence relation for {a,},~, to write
the first four terms of the sequences

apey = 2a,+ l,ay=1 and a,; = 2a, + 1l,aq, = —1.

SOLUTION Notice that the recurrence relation is the same for the two sequences; only the
first term differs. The first four terms of the two sequences are as follows.

n a, witha, = 1 a,witha, = -1

1 a, = 1 (given) a, = —1 (given)

2 a=2a +1=2-1+1=3 a =2a;+1=2-1)+1= -1
3 ay=2a+1=2-3+1=7 a;=2a, +1=2-1)+1=-1
4 ay=2a3+1=2-7+1=15 ay=2a;+1=2-1)+1=-1

We see that the terms of the first sequence increase without bound, while all terms of the
second sequence are —1. Clearly, the initial term of the sequence has a lot to say about
the behavior of the entire sequence. Related Exercises 13—16<

QUICK CHECK 2 Find an explicit formula for the sequence {1,3,7,15,...}
(Example 2). «

EXAMPLE 3 Working with sequences Consider the following sequences.
a. {a,} = {-2.5.12,19,...}  b. {b,} = {3.6,12,24,48,...}

(i) Find the next two terms of the sequence.
(i) Find a recurrence relation that generates the sequence.
(iii) Find an explicit formula for the nth term of the sequence.

SOLUTION

a. (i) Each term is obtained by adding 7 to its predecessor. The next two terms are
19 + 7 =26and 26 + 7 = 33.

(i) Because each term is seven more than its predecessor, the recurrence relation is
a,., =a,+ 7,ay= -2, forn =0,1,2,...

(iii) Notice thatay = —2,a, = =2 + (1-7),and a, = —2 + (2-7), so the explicit
formula is

a, ="Tn — 2, forn = 0,1,2,....

b. (i) Each term is obtained by multiplying its predecessor by 2. The next two terms are
48-2 = 96and 96-2 = 192.

(ii) Because each term is two times its predecessor, the recurrence relation is
a,., = 2a,,ay = 3, forn = 0,1,2,...

(i) To obtain the explicit formula, note that @, = 3,a, = 3(2'), and @, = 3(2°).
In general,

a, = 3(2"), forn =0,1,2,....
Related Exercises 17-22 <
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Limit of a Sequence

Perhaps the most important question about a sequence is this: If you go farther and farther
out in the sequence, ag, - - -, @10.000s - - - » 4100.000s - - - » how do the terms of the sequence be-
have? Do they approach a specific number, and if so, what is that number? Or do they
grow in magnitude without bound? Or do they wander around with or without a pattern?

The long-term behavior of a sequence is described by its limit. The limit of a se-
quence is defined rigorously in the next section. For now, we work with an informal
definition.

DEFINITION Limit of a Sequence

If the terms of a sequence {a,} approach a unique number L as n increases, then

we say lim a, = L exists, and the sequence converges to L. If the terms of the
Y G q g

sequence do not approach a single number as n increases, the sequence has no
limit, and the sequence diverges.

EXAMPLE 4 Limit of a sequence Write the first four terms of each sequence. If you
believe the sequence converges, make a conjecture about its limit. If the sequence appears
to diverge, explain why.

SAk
a. Explicit formula
n=1

FIGURE 9.3 A" Ldns
b. {cos (n’n’)}:':l Explicit formula
a, A ¢. {a,} =i, wherea,,, = —2a,a; = 1 Recurrence relation
2o L S SOLUTION
a. Beginning with n = 1, the first four terms of the sequence are
05 4_ a, = cos (mn)
{ (Gl D Gt D Gt VA Gl O } ~ {_1 111 }
Il 1 1 il | | | | } } P 12+1.21+1.32+l.42+1.... 2.5~ l().l7.“. ‘
o 1 234567 89100n" y ; : T .
The terms decrease in magnitude and approach zero with alternating signs. The limit
~05 T appears to be 0 (Figure 9.3).
b. The first four terms of the sequence are
e e o o o {cos 7, cos 27, cos 3, cosda, ...} = {—=1,1,—1,1,... }.
FIGURE 9.4 In this case, the terms of the sequence alternate between —1 and +1, and never
approach a single value. Thus, the sequence diverges (Figure 9.4).
“n ‘E c¢. The first four terms of the sequence are
20
—2ay, —2a,,—2as,...} = {1,—2,4,-8,... }.
b= —Taa =1 {1, —2a,, —2a>, —2as,...} = {1,—2,4,-8,...}
10— Because the magnitudes of the terms increase without bound, the sequence diverges
° (Figure 9.5). Related Exercises 23—-30 <
" R
: L EXAMPLE 5 Limit of a sequence Enumerate and graph the terms of the following
[ ] A 3 o5
-0 sequence and make a conjecture about its limit.
4n’ R
—20 a, = — forn = 1,2,3,... Explicit formula
n + 1
_30 W
L]

FIGURE 9.5
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SOLUTION The first 14 terms of the sequence  The sequence values approach |
{a,} are tabulated in Table 9.1 and graphed a, A | 4asnincreases.

in Figure 9.6. The terms appear to approach 4. 4
dT-—geeeeeee0eee —
Table 9.1 T
3 —
n a, n a, 1 a = :‘"" l
n & ‘L
I 2.000 8 3.992 2t "
2 3.556 9 3.995 T
3 3.857 10 3.996 1+
4 3.938 11 3.997 T
5 3.968 12 3.998 bt
0 4 8 12 n
6 3.982 13 3.998
7 3.988 14 3.999 FIGURE 9.6
Related Exercises 31—44 <

EXAMPLE 6 A bouncing ball A basketball tossed straight up in the air reaches a
high point and falls to the floor. Assume that each time the ball bounces on the floor it
rebounds to 0.8 of its previous height. Let 4, be the high point after the nth bounce, with
the initial height being /4, = 20 ft.

a. Find a recurrence relation and an explicit formula for the sequence {A,}.

b. What is the high point after the 10th bounce? after the 20th bounce?

¢. Speculate on the limit of the sequence {/,}.
SOLUTION

a. We first write and graph the heights of the ball for several bounces using the rule that
each height is 0.8 of the previous height (Figure 9.7). For example, we have
hy = 20 ft
hy = 08 hy = 16t
hy = 0.8 hy = 0.8° hy = 12.80 ft
hy=08h, = 0.8 hy = 10.24 ft

hy = 08 hy = 0.8* hy ~ 8.19 ft.

Q

Each number in the list is 0.8 of the previous number. Therefore, the recurrence
relation for the sequence of heights is

hyiy = 0.8 h, forn = 0,1,2,3,...,hy = 20ft.
To find an explicit formula for the nth term, note that
hy = hy-08,  hy=hy-08,  hy=hy-08, and  h, = hy-0.8".
In general, we have
h, = hy+0.8" =20-0.8", forn =0,1,2,3,...,

which is an explicit formula for the terms of the sequence.

b. Using the explicit formula for the sequence, we see that after n = 10 bounces, the next

height is
hy = 20-08" ~ 2.15ft.

After n = 20 bounces, the next height is

hyy = 20-0.8% ~ 0.23ft.

¢. The terms of the sequence (Figure 9.8) appear to decrease and approach 0. A reasonable

conjecture is that lim £, = 0. Related Exercises 4548 <

n—00
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FIGURE 9.9

SEQUENCES AND INFINITE SERIES

Infinite Series and the Sequence of Partial Sums
An infinite series can be viewed as a sum of an infinite set of numbers: it has the form

[o¢]
at+a+--+a, + = Eak.
k=1

where the terms of the series, ay, as, ..., are real numbers. An infinite series is quite dis-
tinct from a sequence. We first answer the question: How is it possible to sum an infinite
set of numbers and produce a finite number? Here is an informative example.

Consider a unit square (sides of length 1) that is subdivided as shown in Figure 9.9.
We let S, be the area of the colored region in the nth figure of the progression. The area of
the colored region in the first figure is

Sl:l'

N | —
1 | —

The area of the colored region in the second figure is S, plus the area of the smaller blue
= _11 Therefore,

B[ —

square, which is % .

L 1.1
272 4

The area of the colored region in the third figure is S, plus the area of the smaller

green rectangle, which is % -% = %. Therefore,

1, 1,1
T2 4§
Continuing in this manner, we find that
1 | 1 1
S, =—+—+—+-+—
2 4 8 2"

If this process is continued indefinitely, the area of the colored region S, approaches the
area of the square, which is 1. So, it is plausible that

lim §,=—-+—+—-+---= 1.

n— o0

L.d
48

sum continues indefinitely

N | —

This example shows that it is possible to sum an infinite set of numbers and obtain a finite
number—in this case, the sum is 1. The sequence {S,} generated in this example is ex-
tremely important. It is called a sequence of partial sums, and its limit is the value of the

infinite series% + % + % o aws

EXAMPLE 7 Working with series Consider the infinite series
0.9 + 0.09 + 0.009 + 0.0009 + ---,

where each term of the sum is 1/10 of the previous term.

a. Find the sum of the first one, two, three, four, and five terms of the series.
b. What value would you assign to the infinite series 0.9 + 0.09 + 0.009 + ---?



SOLUTION
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a. Let S, denote the sum of the first n terms of the given series. Then,

S
S

Ss
S4

0.9

0.9 + 0.09 = 0.99

0.9 + 0.09 + 0.009 = 0.999

0.9 + 0.09 + 0.009 + 0.0009 = 0.9999

Ss = 0.9 + 0.09 + 0.009 + 0.0009 + 0.00009 = 0.99999.

b. Notice that the sums S, S,. ..., S, form a sequence {S,}, which is a sequence of
partial sums. As more and more terms are included, the values of S, approach 1.
Therefore, a reasonable conjecture for the value of the series is 1:

|QUICK CHECK 3 Reasoning as in
Example 7, what is the value of
03 + 0.03 + 0.003 + ---?

09 + 0.09 + 0.009 + 0.0009 + - = 1
S, =09

S, = 0.99

§; = 0.999 Related Exercises 49-52 <«

The general nth term of the sequence in Example 7 can be written as

Recall the summation notation S, =

n

introduced in Chapter 5: zak means
k=1

9 + 0.09 + 0.009 + -+ 00...9 = >9-0.1"
s =

N
nterms

a+a+--+a We observed that "li’mjU S, = 1. For this reason, we write

n

lim S, = lim 29 -0.1% = 29 0.1" = L.

n—0o0 n—o0 ;-

S, new object

oC

By letting n — 00 a new mathematical object 29 -0.1* is created. It is an infinite series

k=1

and it is the limit of the sequence of partial sums.

DEFINITION Infinite Series

» The term series is used for historical Given a set of numbers {a,. a,, ay, .. .}. the sum
reasons. When you see series, you should
think sum.
at+a tayt+ = Eak
is called an infinite series. Its sequence of partial sums {S,} has the terms
Si = aq
Sl = a + a
S3 = a o+ a; 4= (25
S,=ay+ay+ay+--+a,= da, forn=1273,...
k=1
o0
'QUICK CHECK 4 Do the series 21 and If the sequence of partial sums {S,} has a limit L, the infinite series converges to
k=1 that limit, and we write

o0

2 k converge or diverge?
k=1

Ea,‘ = lim Ea,‘ = lim §, = L.
I

n—0o0 k= n—0o0
S

S,

If the sequence of partial sums diverges, the infinite series also diverges.
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SEQUENCES AND INFINITE SERIES

EXAMPLE 8 Sequence of partial sums Consider the infinite series
)
Py
a. Find the first four terms of the sequence of partial sums.
b. Find an expression for S, and make a conjecture about the value of the series.
SOLUTION

a. The sequence of partial sums can be evaluated explicitly:

: 1 1
Sq = _ = —
S : ; k(k +1) 2
A
o 2 1 112
S, = — ==+ - ==
094+ ...0000.000000 = ;k(k +1) 2 6 3
08— .o. .
4 : 1 1 1 3
07T o Sszzyi:_jL-*.__:_
0.6+ ¢ = Skk+1) 2 6 12 4
0.5+ "ot q
1 1 1 1 4
041 S*:E—k =S+t =+ oo =
03+ Skk+1) 2 6 12 20 5
02T b. Based on the pattern in the sequence of partial sums, a reasonable conjecture is that
oT n 12345
} ; ; > ,=——forn=123..., hich produces tt ———
5 t + + +— S . forn which produces the sequence {2 7158 }
FIGURE 9.10 (Figure 9.10). Because lim = 1, we conclude that

n—oon +
Z |
lim §, = — = 1.
n—oo ,; k(/\’ + 1) Related Exercises 53-56 <

'QUICK CHECK 5 Find the first four terms of the sequence of partial sums for the series

2 (—1)*k. Does the series converge or diverge?
k=1

Summary
This section has shown that there are three key ideas to keep in mind.
* A sequence {ay, ay, ..., a,, ... } is an ordered /ist of numbers.
o

* An infinite series zak = a, + a, + ay + ---is a sum of numbers.
k=1

* The sequence of partial sums S, = a; + a, + -+ + a, is used to evaluate the
o0
series Eak.
k=1

For sequences, we ask about the behavior of the individual terms as we go out farther
and farther in the list; that is, we ask about lim a,. For infinite series, we examine the
n—00



SECTION 9.1 EXERCISES

Review Questions

1.
2.

Define sequence and give an example.

9L AFFOVEvicw 1

sequence of partial sums related to the series. If the sequéi®e of pditial sikths {SHE pas

o0

a limit, then the infinite series Eak converges to that limit. If the sequence of partial sums
k=1

does not have a limit, the infinite series diverges.

Table 9.2 shows the correspondences between sequences/series and functions, and
between summing and integration. For a sequence, the index n plays the role of the inde-
pendent variable and takes on integer values; the terms of the sequence {a,} correspond
to the dependent variable.

With sequences {a,}, the idea of accumulation corresponds to summation, whereas
with functions, accumulation corresponds to integration. A finite sum is analogous to inte-
grating a function over a finite interval. An infinite series is analogous to integrating a
function over an infinite interval.

Table 9.2
Sequences/Series Functions
Independent variable n %
Dependent variable a, f(x)
Domain Integers Real numbers
eg.n=0,1,23,... e.g., {xx =0}
Accumulation Sums Integrals
Accumulation over a i n
finite interval A,:U”" / f(x)dx
0
Accumulation over an > o
infinite interval LZO“‘ / f(x)dx
- 0

7. The terms of a sequence of partial sums are defined by

S, = Ekz. forn =1,2,3,.... Evaluate the first four terms
Suppose the sequence {a,} is defined by the explicit formula ok
a, = 1/n,forn=1,2,3,.... Write out the first five terms of the of the sequence.

sequence.

Suppose the sequence {a,} is defined by the recurrence relation
a,y, = na,, forn =1,2,3,..., where q,
five terms of the sequence.

Define finite sum and give an example.

o0
. e . 1 -
8. Consider the infinite series Z —. Evaluate the first four terms of
k=1 K

. ~ the sequence of partial sums.

= 1. Write out the first d P
Basic Skills
9-12. Explicit formulas Write the first four terms of the sequence

- e N : {an}:;l'
Define infinite series and give an example.
9. a,=1/10" 10. a,=n+ 1/n
X0
. . . _ . 92 _
Given the series . k, evaluate the first four terms of its sequence of ~ 11 @, = 1 + sin (7n/2) 12. a, =2n" = 3n + 1

k=1

partial sums S, = Ek.
=



