PerliEE%1E (#ER)

Tom Christiansen,

O,REILLY® brian d foy, Larry Wall,
P ) G Jon Orwant &



(IR L)

PerliZ & HiE wow
Programming Perl

Tom Cbhristiansen, brian d foy & Larry Wall
with Jon Orwant &

Beijing - Cambridge - R h
S dib .
O’Reilly Media, Inc. #K T B AR R

FEXFHRAM



#E)%E_iﬁﬁﬁ (CIP) #iiE

Pefll:ﬁi_g:zﬁﬁ %Hﬁ 3&!‘3‘(/ (%) ﬁiyﬁ%ﬁ"ﬁ
(Christiansen, T.)%3 . —3CEI4 . —F R : AEAKF LK
3, 20126

H4JE3 . Programming Perl
ISBN 978-7-5641-3412-9

. P IL ®%E-- I @ Perl iEE - BFI%it
—#x IV. DTP312

w [ i A B 451 CIP it i (2012) 35 065809 5

{LHERRAREVER A FREID
EF: 10201265

©2012 by O’Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Southeast University Press,
2012. Authorized reprint of the original English edition, 2012 O’Reilly Media, Inc., the owner of all rights
to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
¥ X & i i O’Reilly Media, Inc. i j& 2012,

EXHPMRE A K F R B IR 2012, 3% 6p MR Ay th Aol 3 B 2] i RAUA 4R & AL P AT & —— O’Reilly
Media, Inc. ##47T,

BATA , AFBEHT, ABAEGTHR S SRR FUETH X T4,

Perl iIZ5 e HEMR (RZEDAR)

AR K AT: RERFHRE

o bk EARHM#2 S HR4m: 210096
AR A L&

HIEGRE . TR

] Bt : http://www.seupress.com

L F-Hif k. press@seupress.com

En Ril: 45 T ENRIA R 2 5

. 787 &Kk x 980 &%k 16 FF

: 75

: 1469 F=

: 201246 A 1 kR

: 2012426 A% L iREDRI

: ISBN 978-7-5641-3412-9

: 128.007¢ (ETFH)
FHEBEFENEFERE, FHESEHRBEA, G1% (f$H): 025-83791830

EII[HIA
SarHFFEF M




Preface

The Pursuit of Happiness

Perl is a language for getting your job done.

Of course, if your job is programming, you can get your job done with any “com-
plete” computer language, theoretically speaking. But we know from experience
that computer languages differ not so much in what they make possible, but in
what they make easy. At one extreme, the so-called “fourth generation languages”
make it easy to do some things, but nearly impossible to do other things. At the
other extreme, so-called “industrial-strength” languages make it equally difficult
to do almost everything.

Perl is different. In a nutshell, Perl is designed to make the easy jobs easy, without
making the hard jobs impossible.

And what are these “easy jobs” that ought to be easy? The ones you do every day,
of course. You want a language that makes it easy to manipulate numbers and
text, files and directories, computers and networks, and especially programs. It
should be easy to run external programs and scan their output for interesting
tidbits. It should be easy to send those samie tidbits off to other programs that
can do special things with them. It should be easy to develop, modify, and debug
your own programs, too. And, of course, it should be easy to compile and run
your programs, and do it portably, on any modern operating system.

Perl does all that, and a whole lot more.

Initially designed as a glue language for Unix, Perl has long since spread to most
other operating systems. Because it runs nearly everywhere, Perl is one of the
most portable programming environments available today. To program C or C
++ portably, you have to put in all those strange #ifdef markings for different
operating systems. To program Java portably, you have to understand the id-
iosyncrasies of each new Java implementation. To program a shell script porta-
bly, you have to remember the syntax for each operating system’s version of each

xxiii



command, and somehow find the common factor that (you hope) works every-

where. And to program Visual Basic portably, you just need a more flexible def-
inition of the word “portable”. :-)

Per] happily avoids such problems while retaining many of the benefits of these
other languages, with some additional magic of its own. Perl’s magic comes from
many sources: the utility of its feature set, the inventiveness of the Perl commu-
nity, and the exuberance of the open source movement in general. But much of
this magic is simply hybrid vigor; Perl has a mixed heritage, and has always
viewed diversity as a strength rather than a weakness. Perl is a “give me your
tired, your poor” language. If you feel like a huddled mass longing to be free,
then Perl is for you.

Perl reaches out across cultures. Much of the explosive growth of Perl was fueled
by the hankerings of former Unix systems programmers who wanted to take along
with them as much of the “old country” as they could. For them, Perl is the
portable distillation of Unix culture, an oasis in the wilderness of “can’t get there
from here”. On the other hand, it also works in the other direction: Windows-
based web designers are often delighted to discover that they can take their Perl
programs and run them unchanged on the company’s Unix servers.

Although Perl is especially popular with systems programmers and web devel-
opers, that’s just because they discovered it first; Perl appeals to a much broader
audience. From its small start as a text-processing language, Perl has grown into
a sophisticated, general-purpose programming language with a rich software de-
velopment environment complete with debuggers, profilers, cross-referencers,
compilers, libraries, syntax-directed editors, and all the rest of the trappings of
a “real” programming language—if you want them. But those are all about mak-
ing hard things possible; and lots of languages can do that. Perl is unique in that
it never lost its vision for keeping easy things easy.

Because Perl is both powerful and accessible, it is being used daily in every imag-
inable field, from aerospace engineering to molecular biology, from mathematics
to linguistics, from graphics to document processing, from database manipula-
tion to client-server network management. Perl is used by people who are des-
perate to analyze or convert lots of data quickly, whether you’re talking DNA
sequences, web pages, or pork belly futures.

There are many reasons for the success of Perl. Perl was a successful open source
project long before the open source movement got.its name. Perl is free, and it
will always be free. You can use Perl however you see fit, subject only to a very
liberal licensing policy. If you are in business and want to use Perl, go right ahead.
You can embed Perl in the commercial applications you write without fee or

xxiv | Preface



restriction. And if you have a problem that the Perl community can’t fix, you
have the ultimate backstop: the source code itself. The Perl community is not in
the business of renting you their trade secrets in the guise of “upgrades”. The
Perl community will never “go out of business” and leave you with an orphaned
product.

It certainly helps that Perl is free software. But that’s not enough to explain the
Perl phenomenon, since many freeware packages fail to thrive. Perl is not just
free; it’s also fun. People feel like they can be creative in Perl, because they have
freedom of expression: they get to choose what to optimize for, whether that’s
computer speed or programmer speed, verbosity or conciseness, readability or
maintainability or reusability or portability or learnability or teachability. You
can even optimize for obscurity, if you’re entering an Obfuscated Perl Contest.

Perl can give you all these degrees of freedom because it’s a language with a split
personality. It’s simultaneously a very simple language and a very rich language.
Perl has taken good ideas from nearly everywhere, and installed them into an
easy-to-use mental framework. To those who merely like it, Perl is the Practical
Extraction and Report Language. To those who love it, Perl is the Pathologically
Eclectic Rubbish Lister. And to the minimalists in the crowd, Perl seems like a
pointless exercise in redundancy. But that’s okay. The world needs a few reduc-
tionists (mainly as physicists). Reductionists like to take things apart. The rest
of us are just trying to get it together.

There are many ways in which Perl is a simple language. You don’t have to know
many special incantations to compile a Perl program—you can just execute it
like a batch file or shell script. The types and structures used by Perl are easy to
use and understand. Perl doesn’t impose arbitrary limitations on your data—
your strings and arrays can grow as large as they like (so long as you have mem-
ory), and they’re designed to scale well as they grow. Instead of forcing you to
learn new syntax and semantics, Perl borrows heavily from other languages you
may already be familiar with (such as C, and awk, and BASIC, and Python, and
English, and Greek). In fact, just about any programmer can read a well-written
piece of Perl code and have some idea of what it does.

Most important, you don't have to know everything there is to know about Perl
before you can write useful programs. You can learn Perl “small end first”. You
can program in Perl Baby-Talk, and we promise not to laugh. Or more precisely,
we promise not to laugh any more than we’d giggle at a child’s creative way of
putting things. Many of the ideas in Perl are borrowed from natural language,
and one of the best ideas is that it’s okay to use a subset of the language as long
as you get your point across. Any level of language proficiency is acceptable in

Preface | xxv



Perl culture. We won’t send the language police after you. A Perl script is “cor-
rect” if it gets the job done before your boss fires you.

Though simple in many ways, Perl is also a rich language, and there is much to
be learned about it. That’s the price of making hard things possible. Although it
will take some time for you to absorb all that Perl can do, you will be glad to have
access to Perl’s extensive capabilities when the time comes that you need them.

Because of its heritage, Perl was a rich language even when it was “just” a data-
reduction language designed for navigating files, scanning large amounts of text,
creating and obtaining dynamic data, and printing easily formatted reports based
on that data. But somewhere along the line, Perl started to blossom. It also be-
came a language for filesystem manipulation, process management, database
administration, client-server programming, secure programming, Web-based
information management, and even for object-oriented and functional program-
ming. These capabilities were not just slapped onto the side of Perl—each new
capability works synergistically with the others, because Perl was designed to be
a‘glue language from the start.

But Perl can glue together more than its own features. Perl is designed to be mod-
ularly extensible. Perl allows you to rapidly design, program, debug, and deploy
applications, and it also allows you to easily extend the functionality of these
applications as the need arises. You can embed Perl in other languages, and you
can embed other languages in Perl. Through the module importation mecha-
nism, you can use these external definitions as if they were built-in features of
Perl. Object-oriented external libraries retain their object-orientedness in Perl.

Perl helps you in other ways, too. Unlike a strictly interpreted language such as
command files or shell scripts, which compile and execute a program one com-
mand at a time, Perl first compiles your whole program quickly into an inter-
mediate format. Like any other compiler, it performs various optimizations, and
gives you instant feedback on everything from syntax and semantic errors to
library binding mishaps. Once Perl’s compiler frontend is happy with your pro-
gram, it passes off the intermediate code to the interpreter to execute (or op-
tionally to any of several modular backends that can emit C or bytecode). This
all sounds complicated, but the compiler and interpreter are quite efficient, and
most of us find that the typical compile-run-fix cycle is measured in mere seconds.
Together with Perl’s many fail-soft characteristics, this quick turnaround capa-
bility makes Perl a language in which you really can do rapid prototyping. Then
later, as your program matures, you can tighten the screws on yourself, and make
yourself program with less flair but more discipline. Perl helps you with that, too,
if you ask nicely.

xxvi | Preface



Perl also helps you to write programs more securely. In addition to all the typical
security interfaces provided by other languages, Perl also guards against acci-
dental security errors through a unique data tracing mechanism that automati-
cally determines which data came from insecure sources and prevents dangerous
operations before they can happen. Finally, Perl lets you set up specially pro-
tected compartments in which you can safely execute Perl code of dubious origin,
masking out dangerous operations.

But, paradoxically, the way in which Perl helps you the most has almost nothing
to do with Perl, and everything to do with the people who use Perl. Perl folks are,
frankly, some of the most helpful folks on earth. If there’s a religious quality to
the Perl movement, then thisis at the heart of it. Larry wanted the Perl community
to function like a little bit of heaven, and by and large he seems to have gotten
his wish, so far. Please do your part to keep it that way.

Whether you are learning Perl because you want to save the world, or just because
you are curious, or because your boss told you to, this handbook will lead you
through both the basics and the intricacies. And although we don’t intend to
teach you how to program, the perceptive reader will pick up some of the art,
and a little of the science, of programming. We will encourage you to develop
the three great virtues of a programmer: laziness, impatience, and hubris. Along
the way, we hope you find the book mildly amusing in some spots (and wildly
amusing in others). And if none of this is enough to keep you awake, just keep
reminding yourself that learning Perl will increase the value of your resume. So
keep reading,

What's New in This Edition

What’s not new? It’s been a long time since we've updated this book. Let’s just say
we had a couple of distractions, but we’re all better now.

The third edition was published in the middle of 2000, just as Perl v5.6 was com-
ing out. As we write this, it’s 12 years later and Perl v5.16 is coming out soon. A
lot has happened in those years, including several new releases of Perl 5, and a
little thing we call Perl 6. That 6 is deceptive though; Perl 6 is really a “kid sister”
language to Perl 5, and not just a major update to Perl 5 that version numbers
have trained you to expect. This book isn’t about that other language. It’s still

Preface | xxvii



about Perl 5, the version that most people in the world (even the Perl 6 folks!)
are still using quite productively.!

To tell you what’s new in this book is to tell you what’s new in Perl. This isn't just
a facelift to spike book sales. It’s a long anticipated major update for a language
that’s been very active in the past five years. We won’t list everything that’s
changed (you can read the perldelta pages), but there are some things wed like to
call out specifically. '

In Perl 5, we started adding major new features, along with a way to shield older
programs from new keywords. For instance, we finally relented to popular de-
mand for a switch-like statement. In typical Perl fashion, though, we made it
better and more fancy, giving you more control to do what you need to do. We
call it given-when, but you only get that feature if you ask for it. Any of these
statements enable the feature:

use v5.10;

use feature qw(switch);
use feature qw(:5.10);

and once enabled, you have your super-charged switch:

given ($item) {
when (/a/) { say "Matched an a" }
when (/bee/) { say "Matched a bee" }
}

You'll see more about that in Chapter 4, along with many of the other new features
as they appear where they make the most sense.

Although Perl has had Unicode support since v56, that support is greatly im-
proved in recent versions, including better regular expression support than any
other language at the moment. Perl’s better-and-better support is even acting as
a testbed for future Unicode developments. In the previous edition of this book,
we had all of that Unicode stuff in one chapter, but you’ll find it throughout this
book when we need it.

Regular expressions, the feature that many people associate with Perl, are even
better. Other languages stole Perl’s pattern language, calling it Perl Compatible
Regular Expressions, but also adding some features of their own. We’ve stolen
back some of those features, continuing Perl’s tradition of taking the best ideas
- from everywhere and everything. You’ll also find powerful new features for deal-
ing with Unicode in patterns.

1. Since we're lazy, and since by now you already know this book is about Perl 5, we should mention that we
won'’t always spell out “Perl v5.n"—for the rest of this book, if you see a bare version number that starts
with “v57”, just assume we're talking about that version of Perl.

xxviii | Preface



Threads are much different today, too. Perl used to support two thread models:
one we called 5005threads (because thats when we added them), and interpreter
threads. As of v5.10, it’s just the interpreter threads. However, for various rea-
sons, we didn’t think we could do the topic justice in this edition since we
dedicated our time to many of the other features. If you want to learn about
threads, see the perlthrtut manpage, which is approximately the same thing as
our “Threads” chapter would have been. Maybe we can provide a bonus
chapter later, though.

Other things have come or gone. Some experiments didn’t work out and we took
them out of Perl, replacing them with other experiments. Pseudohashes, for in-
stance, were deprecated, removed, and forgotten. If you don’t know what those
are, don’t worry about it, but don’t look for them in this edition either.

And, since we last updated this book, there’s been a tremendous revolution (or
two) in Perl programming practice as well as its testing culture. CPAN (the Com-
prehensive Perl Archive Network) continues to grow exponentially, making it
Perl’s killer feature. This isn’t a book about CPAN, though, but we tell you about
those modules when they are important. Don’t try to do everything with just
vanilla Perl.

We've also removed two chapters, the list of modules in the Standard Library
(Chapter 32 in the previous edition) and the diagnostic messages (Chapter 33 in
the previous edition). Both of these will be out of date before the book even gets
on your bookshelf. We’ll show you how to get that list yourself. For the diagnostic
messages, you can find all of them in the perldiag manpage, or turn warnings into
longer messages with the diagnostics pragma.

Part I, Overview
Getting started is always the hardest part. This part presents the fundamen-
tal ideas of Perl in an informal, curl-up-in-your-favorite-chair fashion. Not
a full tutorial, it merely offers a quick jump-start, which may not serve ev-
eryone. See the section on “Offline Documentation” below for other books
that might better suit your learning style.

Part II, The Gory Details
This part consists of an in-depth, no-holds-barred discussion of the guts of
the language at every level of abstraction, from data types, variables, and
regular expressions, to subroutines, modules, and objects. You’ll gain a
good sense of how the language works, and in the process, pick up a few
hints on good software design. (And if you've never used a language with
pattern matching, you're in for a special treat.)

Preface | xxix



Part I11, Perl As Technology
You can do a lot with Perl all by itself, but this part will take you to a higher
level of wizardry. Here you’ll learn how to make Perl jump through whatever
hoops your computer sets up for it, everything from dealing with Unicode,
interprocess communication and multithreading, through compiling,
invoking, debugging, and profiling Perl, on up to writing your own external
extensions in C or C++, or interfaces to any existing API you feel like. Perl
will be quite happy to talk to any interface on your computer—or, for that
matter, on any other computer on the Internet, weather permitting.

Part IV, Perl As Culture
Everyone understands that a culture must have a language, but the Perl
community has always understood that a language must have a culture. This
part is where we view Perl programming as a human activity, embedded in
the real world of people. We'll cover how you can improve the way you deal
with both good people and bad people. We’ll also dispense a great deal of
advice on how you can become a better person yourself, and on how to make
your programs more useful to other people.

Part V, Reference Material

Here we've put together all the chapters in which you might want to look
something up alphabetically, everything from special variables and func-
tions to standard modules and pragmas. The Glossary will be particularly
helpful to those who are unfamiliar with the jargon of computer science.
For example, if you don’t know what the meaning of “pragma” is, you could
look it up right now. (If you don’t know what the meaning of “is” is, we
can’t help you with that.)

The Standard Distribution

The official Perl policy, as noted in perlpolicy, is that the last two maintenance
releases are officially supported. Since the current release as we write this is v5.14,
that means both v5.12 and v5.14 are officially supported. When v5.16 is released,
v5.12 won’t be supported anymore.

Most operating system vendors these days include Perl as a standard component
of their systems, although their release cycles might not track the latest Perl. As
of this writing, AIX, BeOS, BSDI, Debian, DG/UX, DYNIX/ptx, FreeBSD, IRIX,
LynxOS, Mac OS X, OpenBSD, 0S390, RedHat, SINIX, Slackware, Solaris,
SuSE, and Tru64 all came with Perl as part of their standard distributions. Some
companies provide Perl on separate CDs of contributed freeware or through their
customer service groups. Third-party companies like ActiveState offer prebuilt

xxx | Preface



Perl distributions for a variety of different operating systems, including those
from Microsoft.

Even if your vendor does ship Perl as standard, you'll probably eventually want
to compile and install Perl on your own. That way you’ll know you have the
latest version, and you'll be able to choose where to install your libraries and
documentation. You'll also be able to choose whether to compile Perl with sup-
port for optional extensions such as multithreading, large files, or the many low-
level debugging options available through the -D command-line switch. (The
user-level Perl debugger is always supported.)

The easiest way to download a Perl source kit is probably to point your web
browser to Perl's homepage (http://www.perl.org), where you'll find download in-
formation prominently featured on the start-up page, along with links to pre-
compiled binaries for platforms that have misplaced their C compilers.

You can also head directly to CPAN, described in Chapter 19, using http://www
.cpan.org. If those are too slow for you (and they might be, because they'’re very
popular), you should find a mirror close to you. The MIRRORED.BY (http://www
.cpan.org/SITES. html) file there contains a list of all other CPAN sites, so you can
just get that file and then pick your favorite mirror. Some of them are available
through FTP, others through HTTP (which makes a difference behind some
corporate firewalls). The http://www.cpan.org multiplexor attempts to do this se-
lection for you. You can change your selection if you like later.

Once you've fetched the source code and unpacked it into a directory, you should
read the README and the INSTALL files there to learn how to build Perl. There
may also be an INSTALL.platform file for you to read there, where platform rep-
resents your operating system platform.

If your platform happens to be some variety of Unix, then your commands to
fetch, configure, build, and install Perl might resemble what follows. First, you
must choose a command to fetch the source code. You can download via the
Web using a browser or a command-line tool:

% wget http://www.cpan.org/src/5.0/maint.tar.gz

Now unpack, configure, build, and install:

% tar zxf latest.tar.gz # or gunzip first, then tar xf
% cd perl-5.14.2 # or 5.* for whatever number
% sh Configure -des # assumes default answers

% make test && make install # install typically requires superuser

Your platform might already have packages that do this work for you (as well as
providing platform-specific fixes or enhancements). Even then, many platforms
already come with Perl, so you might not need to do anything.

Preface | xxxi



If you already have Perl but want a different version, you can save yourself some
work by using the perlbrew tool. It automates all of this for you and installs it
where you (should) have permissions to install files so you don’t need any ad-
ministrator privileges. It’s on CPAN as App: :perlbrew, but you can also install it
according to the documentation:

% curl -L http://xrl.us/perlbrewinstall | bash

Once installed, you can let the tool do all the work for you:

% ~/perl5/perlbrew/bin/perlbrew install perl-5.14.2
There’s a lot more that perlbrew can do for you, so see its documentation.

You can also get enhanced versions of the standard Perl distribution. ActiveState
offers ActivePerl (http://www.activestate.com/activeperl/downloads) for free for
Windows, Mac OS X, and Linux, and for a fee for Solaris, HP-UX, and AIX.

Strawberry Perl (http://'www.strawberryperl.org) is Windows-only, and it comes
with the various tools you need to compile and install third-party Perl modules
for CPAN.

Citrus Perl (http://www.citrusperl.com/) is a distribution for Windows, Mac OS X,
and Linux that bundles wxPerl tools for creating GUIs. It’s targeted at people
who want to create distributed GUI applications with Perl instead of a general-
purpose Perl. Its Cava Packager (http://www.cava.co.uk/) tool helps you do that.

Online Documentation

Perl’s extensive online documentation comes as part of the standard Perl distri-
bution. (See the next section for offline documentation.) Additional documen-
tation shows up whenever you install a module from CPAN.

When we refer to a “Perl manpage” in this book, we're talking about this set of
online Perl manual pages, sitting on your computer. The name manpage is purely
a convention meaning a file containing documentation—you don’t need a Unix-
style man program to read one. You may even have the Perl manpages installed
as HTML pages, especially on non-Unix systems.

The online manpages for Perl have been divided into separate sections so you can
easily find what you are looking for without wading through hundreds of pages
of text. Since the top-level manpage is simply called perl, the Unix command

xxxii | Preface



“man perl” should take you to it.2 That page in turn directs you to more specific
pages. For example, “man perlre” will display the manpage for Perl’s regular ex-
pressions. The perldoc command often works on systems when the man com-
mand won’t. Your port may also provide the Perl manpages in HTML format or
your system’s native help format. Check with your local sysadmin, unless you're
the local sysadmin. In which case, ask the monks at http://perlmonks.org.

Navigating the Standard Manpages

In the Beginning (of Perl, that is, back in 1987), the perl manpage was a terse
document, filling about 24 pages when typeset and printed. For example, its
section on regular expressions was only two paragraphs long. (That was enough,
if you knew egrep.) In some ways, nearly everything has changed since then.
Counting the standard documentation, the various utilities, the per-platform
porting information, and the scads of standard modules, we now have thousands
of typeset pages of documentation spread across many separate manpages. (And
that’s not counting any CPAN modules you install, which is likely to be quite a
few.)

But in other ways, nothing has changed: there’s still a perl manpage kicking
around. And it’s still the right place to start when you don’t know where to start.
The difference is that once you arrive, you can’t just stop there. Perl documen-
tation is no longer a cottage industry; it’s a supermall with hundreds of stores.
When you walk in the door, you need to find the You ARE HERE to figure out which
shop or department store sells what you’re shopping for. Of course, once you
get familiar with the mall, you’ll usually know right where to go.

A few of the store signs you'll see are shown in Table P-1.

Table P-1. Selected Perl manpages

Manpage Covers
perl What perl manpages are available

perldata | Data types

perlsyn Syntax

perlop Operators and precedence
perlre Regular expressions
perlvar Predefined variables

2. 1f you still get a truly humongous page when you do that, youre probably picking up the ancient v4
manpage. Check your MANPATH for archaeological sites. (Say “perldoc perl” to find out how to configure
your MANPATH based on the output of “perl -V:man.dir”)

Preface | oxiii



Manpage Covers

perlsub Subroutines

perlfunc | Built-in functions

perlmod | How perl modules work

perlref References

perlobj Objects

perlipc Interprocess communication

perlrun How to run Perl commands, plus switches

perldebug | Debugging

perldiag Diagnostic messages

That’s just a small excerpt, but it has the important parts. You can tell that if you
want.to learn about an operator, that perlop is apt to have what youre looking
for. And if you want to find something out about predefined variables, you’d

check in perlvar. If you got a diagnostic message you didn't understand, youd go
to perldiag. And so on.

Part of the standard Perl manual is the frequently asked questions (FAQ) list. It’s
split up into these nine different pages, as shown in Table P-2.

Table P-2. The perlfag manpages

Manpage | Covers

perlfaql | General questions about Perl
perlfag2 | Obtaining and learning about Per]
perlfag3 | Programming tools

perlfag4 | Data manipulation

perlfag5 | Files and formats

perlfag6 | Regular expressions

perlfaq7 | General Perl language issues

perlfag8 | System interaction

perlfag9 | Networking

Some manpages contain platform-specific notes, as listed in Table P-3.

xxxiv | Preface



Table P-3. Platform-specific manpages

Manpage Covers

perlamiga The Amiga port
perlcygwin | The Cygwin port

perldos The MS-DOS port
perlhpux The HP-UX port
perlmachten | The Power MachTen port

perlos2 The OS/2 port
perlos390 The OS/390 port
perlvms The DEC VMS port

perlwin32 The MS-Windows port

(See also Chapter 22 and the CPAN ports (http://www.cpan.org/ports/index
.html) directory described earlier for porting information.)

Non-Perl Manpages

When we refer to non-Perl documentation, as in getitimer(2), this refers to the
getitimer manpage from section 2 of the Unix Programmer’s Manual.3 Manpages
for syscalls such as getitimer may not be available on non-Unix systems, but that’s
probably okay, because you couldn’t use the Unix syscall there anyway. If you
really do need the documentation for a Unix command, syscall, or library func-
tion, many organizations have put their manpages on the Web—a quick search
of Google for crypt(3) manual will find many copies.

Although the top-level Perl manpages are typically installed in section 1 of the
standard man directories, we will omit appending a (1) to those manpage names
in this book. You can recognize them anyway because they are all of the form
“perlmumble”

3. Section 2 is only supposed to contain direct calls into the operating system. (These are often called “system
calls”, but we’ll consistently call them syscalls in this book to avoid confusion with the system function,
which has nothing to do with syscalls). However, systems vary somewhat in which calls are implemented
as syscalls, and which are implemented as C library calls, so you could conceivably find getitimer(2) in
section 3 instead.

Preface | xxxv



Offline Documentation

If youd like to learn more about Perl, here are some related publications that we
recommend:

Perl 5 Pocket Reference, by Johan Vromans; O'Reilly Media (5™ Edition, July
2011). This small booklet serves as a convenient quick-reference for Perl.

Perl Cookbook, by Tom Christiansen and Nathan Torkington; O’Reilly Media
(27 Edition, August 2003). This is the companion volume to the book you
have in your hands right now. This cookbook’s recipes teach you how to
cook with Perl.

Learning Perl, by Randal Schwartz, brian d foy, and Tom Phoenix; O'Reilly
Media (6™ Edition, June 2011). This book teaches programmers the 30% of
basic Perl they’ll use 70% of the time, and it is targeted at people writing self-
contained programs around a couple of hundred lines.

Intermediate Perl, by Randal Schwartz, brian d foy, and Tom Phoenix; O’Reilly
Media (March 2006). This book picks up where Learning Perl left off, intro-
ducing references, data structures, packages, objects, and modules.

Mastering Perl, by brian d foy; O’'Reilly Media (July 2007). This book is the
final book in the trilogy along with Learning Perl and Intermediate Perl. In-
stead of focusing on language fundamentals, it shifts gears to teaching the
Perl programmer about applying Perl to the work at hand.

Modern Perl, by chromatic; Oynx Neon (October 2010). This book provides
a survey of modern Perl programming practice and topics, suitable for people
who know programming already but haven’t paid attention to recent devel-
opments in Perl.

Mastering Regular Expressions, by Jeffrey Friedl; O'Reilly Media (3 Edition,
August 2006). Although it doesn’t cover the latest additions to Perl regular
expressions, this book is an invaluable reference for anyone seeking to learn
how regular expressions work.

Object Oriented Perl, by Damian Conway; Manning (August 1999). For be-
ginning as well as advanced OO programmers, this book explains common
and esoteric techniques for writing powerful object systems in Perl.
Mastering Algorithms with Perl, by Jon Orwant, Jarkko Hietaniemi, and John
Macdonald; O’Reilly Media (1999). All the useful techniques from a CS al-
gorithms course but without the painful proofs. This book covers funda-
mental and useful algorithms in the fields of graphs, text, sets, and more.

xxxvi | Preface



