CHFnCH++EHFFix
PEARSON RS BRE, REEAS®

C bt 550

(BE3HR)

[2£] Andrew Koenig &

B CIESRHEF
B EFESFXR IR A
B FENCIE R REFHE M HFNES

PEARSON

fH = TR Be3

(ZE3ZhiR)

Cmr

[2] Andrew Koenig &

EBEE&RE (C1P) HiE

CRaBH 5RpE - #3r / (38) Bk (Koenig, A.)
. - dbig - AR#FRERA, 2013.2
ISBN 978-7-115-30859-7

I. ©C- II. @%--- IIl. OCEZ—BIFWIT—5ky
IV. (DTP312

o B BB A B B IRCTPEE #4 % (2013) 350123375
AL 4B

Original edition, C Traps and Pitfalls, 9780201179286, by Andrew Koenig, published by Pearson
Education, Inc., publishing as Prentice-Hall, Copyright © 1989.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording or by any information
storage retrieval system, without permission from Pearson Inc.

English reprint published by Pearson Education North Asia Limited and Posts &
Telecommunication Press, Copyright © 2013.

This edition is manufactured in the People’s Republic of China, and is authorized for sale and
distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macau SAR).

AH I EA Pearson Education HIEERFAFRIRE, THREEFBHE.

C faft 5 5RBE (TR
¢ F {%] Andrew koenig
BTRE T Ik
& ARHSHMARFACRAT LS o 8 8 St 14 5
Mg 100061 i FHE 315@ptpress.com.cn
Wikl http://www.ptpress.com.cn
b3t 8 5l ENR A B4] U1 A
® JPA: 700x1000 1/16

EI#k: 10
s 207 TF 2013 2 SRR
B 1--2500 it 2013 4 2 JIIERUS 1 I EI)

FEENEFBYE BT 01-2012-9285 5
ISBN 978-7-115-30859-7
EHr: 39.00 T

FERRSMLE: (010)67132692 ENIEEEBAE: (010)67129223
Bk (010)67171154

AERE

YE# L 1985 S4E Bell SE860 RN R KR -RIRSUCAEA, 456 H O LELK,
O T XA C BT R AR EMENSRER. SEKXBRHE RSN EELH C
mE, MORERB) C FEIr Red g fEnl AR o B B AN B i

YN 8%, MRIMIENEST. AL ER. BRI PR, T
FYEBPASE LA AT T C Rl EEB RN . &5, EEMH ERRES
T HETRAERAERE.

AEGEEH EAKMN CHRFREEF], BMERE CHER T, ABhRX
AR F R % 55

{EER

Andrew Koenig

AT&T KHARRETHERE (BT JURERE) BRF. A 1986 EFHENF CES
BIREF, 1977 FEMAJURERE, RS T SR HKRE, JF i
7 1988 SEHLRBTF T 58— M UHAER] C++ . 78 ISO/ANSI
CHZEREHALN 1989 F, MBIMATIZERS, H—HBAM
Hm#H. hoBRRT C++HHEM 100 EHEIEX, #F
Addsion-Wesley iR T C Trap and Pitfalls, ((C BB 555))
Ruminations on C++ ({C+HYTBRY), TN IEF|H F L HE .

Andrew Koenig MY HH Z2FH) C++IF K. HIAMBFELR,
MHERS S ST CHFNEHMMERE, X CHRIRMRREESEENRm.

[:1]

113

T EKFEFITRING, 150N T 19T E 155 55 1 R e R R 1 SRR
RS LFHCR. RIREERGS OSSR, VIS SRS MEN, RBUEER
FREERE CAT, B ALRRESHARXHER CITHEE -2 aB0N1H. ¥
¥EBAAENEHTF, TRESERAMNKHBBRBRERY, B -HRGdE, #e
RINEATR S FIEH.

XFE AR RITE SRS . T - MEFRINES, BFa SRiEE
FEfE, RATRESAERE TEERABEMIMNTRIRG. AHK R, X%RH R
SRIRNFET WL ES AR R, B TREN—MEE, ILFEMER R R R
f-—sestt Rt iR meid sk Kk, TEE MBI T IR T R 5 LR
PRI LAKAE . BB RISk,

BB —RERE XL 1977 £, 40, £ BITHUE KBTI —IK
SHARE (IBM KEKNLHFH) &, BAET KSR “PLA TN E BB
ke . Rl AR S, RRMABHELLT K¥ AT AT&T #IUREE R, EFHMELLT
REBMNFEQITEES & PLA, WMIREREDEEMHRIES AR Co A TUR
LR RN 10 4, RHE T EERNLR, g CEFR (WEEEAN) A
AR R R IR S S I EIE 2 S Ui

1985 1, HIFMARNESR X CESHILERM, FHFEFREEREHEED W
WS SR % . X B AT 51 R R BIR K K P F A E R A 2000 £ A1) JUR
L F MR BHEERE TR A BRI E A L ERIZR N A,
TRBE R T MERE TR R AS.

EHEMNA

ALHREHER - BEFR, EERERZEMBNER L, WA g
EHR . ERERSK, DARBRSF IR R . XEEIRER E - HgRRIF R

#

m

BLIAUURIE AR, AR . KL, A BMANE SRR BB, A A
HAR) T

R AFEF U BFRTPEERIR] C EBE RBUE RS, XA %
ARG Sk # B . IMERCRLR A C BESHETREMT R, R L
HiXAT, REEADEHTRIEL CRRF RH BB “ B LR YIRIEET
ZKFE A Bug!” WRMRIEABIR C i 5 R AR, A TR TCEE W WAL RO IR 10 # A HERE
()7 kR b AE I A £

P RS S) A

ABA RN C EF R, FEFRLRAEHAMETRNE S, A TR
R, AP TEE KA 10 4F1) C IBRHKER, EHERT C BT &ME
SR “RABET, B AR A GRS 51 A A IR B A A CLA BB WA i Al A B
JEHHR 2R H

APARRE A “EEEE” o ROURGA LT LB VSR 5 S ke o8 4nig
. WIR AT S, A BT (A ACHE SRS T LU (RS R NG
(bR VKA A, %o AT o B0 R0 37 30 VBRI L IR AR A il g
ot & U SE B 2 DT E AR B0 . T, WSt SURBE F T Rl E R
B GER A, Bt AR KB R ERIER I T N

AP AR B C W F %FE (W Kernighan Ml Ritchie: The C
Programming Language, % 2}, Prentice-Hall, 1988), #HAE A& C i GEH T
A} (W Harbison il Steele: C: A Reference Manual, %52 J, Prentice-Hall, 1987),
AR LB K S E Y (W Van Wyk: Data Structures And C Programs,
Addison-Wesley, 1988), {U{X Al 44 7 n Atk (W Horton: How To Write Portable
Programs In C, Prentice-Hall, 1989) Al {+ Z & 1| () Kernighan FI Pike: The Unix
Programming Environment, Prentice-Hall, 1984). A5t B M) EFESE JRE Y oM
Be, REYME T L CONRA YIS e a0 BEHR, B RGN
) C it #E8, W. Feuer: The C Puzzle Book, Prentice-Hall, 1982). AISHEAS 1
A AR AR 1, B B ORI A, LSRR I e B 4 (0.

&S 55T
WL, TR TR A BRI £ A C TR A

B AH K, BT Addison-Wesley HiRH RE R, AT o, RN
WRES AR R B, JF R ARE0H -

]
o

XTF ANSIC

(ER SR, ANSI C brE i G @ 8. M, £8 ANSI & 5 A58
2R, “ANSIC” BBEEMEA Lt 5 A IER. mszhs B, ANSI brukdl
TAEREOERREE, APYREMAR ANSL C fRRENRIEAR AR T
o T CHIIEIRILE CAEI 7 NI ANSI T P BB C il E M2 f
N

PRI T C i8I SChe B) ANST bRdE s BGR, e A
KIS o EEE B WA, T LT AR D S A0 R L e)
RS C & PR 8% 1 8 K Nk &

Bt

A i) ”fﬁf!l"JW/EE%?EfEE T4 - Az el ASERE. BN EM#Rm kil C
VAR) B, At) Steve Bellovin(6.3), Mark Brader(1.1 /7)), Luca Cardelli
(4.4 i), Larry Cipriani (2.3 15), Guy Harris and Steve Johnson (2.2 i), Phil Kam
(2.2 1), Dave Kristol (7.5 ¥7), George W. Leach (1.1 1), Doug Mcliroy (2.3 17,
Barbara Moo (7.2 #7), RobPike (1.1 1i), Jim Reeds (3.6 i), Dennis Ritchie (2.2
i), Janet Sirkis (5.2 i), Richard Stevens (2.5 7), Bjarne Stroustrup (2.3 7)),
Ephraim Vishnaic (1.4 %), DIA—{7 FIEER B R EAF (23). AR,
’f IR A) B AR AU B TES - R R) B FACh X i A A
FLAR I ok, T FLEMER, AR AR R A . 2 XTI AL
TARALRL, i A R A R IR

£r - R g 48 77 iV 2 A B K 1] Steve Bellovin, Jim Coplien, Marc
Donner, Jon Forrest, Brian Kernighan, Doug Mcllroy, Barbara Moo, Rob Murray,
Bob Richton, Dennis Ritchie, Jonathan Shapiro, LA —26RFEFEU LRI . Lee
McMahon 4 Ed Sitar JyFdRH 7 TR FRM VD RARR, EREER T TR
BB 2 (I 2 M . Dave Prosser Ky FE 1] T V8% ANSIC K412 4L . Brian
Kernighan J45% 7 8 A 4 48 O HERR T R RIFE B .

tj Addison-Wesley H & 18 12— g bl) Gid , X8 Jim DeWolf, Mary Dyer,
Lorraine Ferrier, Katherine Harutunian, Marshall Henrichs, Debbie Lafferty, Keith
Wollman, i Helen Wythe, 448K, 41t 836 A N BB RGN LIS AL 2] 17 4
B, AR LANR, et - RSk

=}
m

BRI AT&T VURSCIR B R, A1 R A R S R A R 74 L
A, {1FE Steve Chappell, Bob Factor, Wayne Hunt, Rob Murray, Will Smith,
Dan Stanzione Fl Eric Sumner.

A4 525 Robert Sheckley [FRIL)/INIEEM A K, HASK K The People
Trap and Other Pitfalls, Snares, Devices and Delusions (as well as Two Sniggles and

a Contrivance) (1968 (1] Dell Books Hi/g)

CONTENTS

0 INLEOAUCTION civiiiiirreiiiiiiiininresiiesnieesesssassaresrerssssssstassanessstaes sat sossssssssssnansssesassassnsss 1

1 Lexical Pitfalls cciviciiminnniiiininniiiinsisissrionssmssastsseassesesnesssscsssesass e ssnsss 5
1.1 =08 MOt == 6

1.2 & and | are NOt && OF 11 i 7

1.3 Greedy lexical analysis.........cocoiii 7

1.4 Integer constants.................. 9

1.5 Strings and characters ... 10

2 Syntactic Pitfalls....vmrriiinirireciesesssss e sasasens 13
2.1 Understanding function declarations. ... 13

2.2 Operators don’t always have the precedence you want........ 17

2.3 Watch those semicolons!.............c 20

2.4 The switch statement. ... 22

2.5 Calling functions ..o 24

2.6 The dangling else problem ... 24

3 Semantic Pitfalls... st st et 27
3.1 Pointers and @TTays........cccococviiiinncsienin s 27

3.2 POINters are MOt @ITAYS.....ovuieecerevierreessemommeise st 32

3.3 Array declarations as parameters ... 33

3.4 Eschew synecdoche ... 34

3.5 Null pointers are not null strings........ccoviinin 35

3.6 Counting and asymmetric bounds ... 36

3.7 Order of evaluationcccimiiimnne 46

3.8 The &8, 1}, and ! OPeratorscccooomiecncnnicimnisie 48

3.9 Integer overflow ... 49

3.10 Returning a value from main ... 50

C TRAPS AND PITFALLS

CONTENTS

4 LinKage ...ttt ensessnenes 53
4.1 Whatisa linker? ... s 53

4.2 Declarations vs. definitions.........c.cccocvevieiconiii e 54

4.3 Name conflicts and the static modifier........ccooiivvenimni. 56

4.4 Arguments, parameters, and return values............ccc.coceeue. 57

4.5 Checking external types ... 63

4.6 Header files ... 66

5 Library functions, Cesssansansanenstbsanes 69
5.1 getchar returns an iNteGercocoiiiiiiininninnienn 70

5.2 Updating a sequential file..........ccocoinimiiiiiinnnee 70

5.3 Buffered output and memory allocation..........ccc.oooiinns 72

5.4 Using errno for error detection............ccooovvininie i 73

5.5 The signal function ..., 74

6 TRE PrePTOCESSOT vicveirrrinissesresieiirsssininiiesssnssssesstassesossntissessnssnssnssrmssssssasssssns 77
6.1 Spaces matter in macro definitions.............c..ococ 77

6.2 Macros are not fUNCHONSccooniiiiiiii i 78

6.3 Macros are not statements. ... 82

6.4 Macros are not type definitions ... 83

7 Portability pitfalls ...cocvvivinnnniicnninenene. ereserssessarersesanas 85
7.1 Coping with change. ... 85

7.2 What's iN @ NAME?.... ..ot s 87

7.3 How big is an INEZET? ... 88

7.4 Are characters signed or unsiyned? ... 89

7.5 Shift OPeTators ..o s 90

7.6 Memory 1ocation ZBTOcooiiieiieiicineie 91

7.7 How does division truncate? ..., 92

7.8 How big is a random numMber?........ccivniiiiii 93

7.9 Case COMVETSIOM oot 93

7.10 Free first, then reallocate? ... 95

7.11 An example of portability problems..........cccoovniiiiiiinnnn 96

8 Advice and answers.............. eresserssnereravessasansens 101
B.1 AAVICE ..oiiiiirict ettt s s s s st 102

8.2 ANSWETS .c.oieeenreereeeseasatssreseraessentees b eh oSy seAs st 105

CONTENTS

C TRAPS AND PITFALLS

Appendix: printf, varargs, and stdarg... 121
A.l The printf family.......coieecins 121
Simple format tyPescoooveeiiiiiircii e 123
MOdIfIeTS vt s 127
FLaGS ..oovieiecicece e 130
Variable field width and precision............ccooininnin. 132
NEOIOGISMSoiiiiiiiici i 133
ANAChTONISINS ...t 133

A.2 Variable argument lists with varargs.h.....cccccinn 134
Implementing varargs . h.......coi 138

A3 stdarg.h: the ANSI varargs.ho.......nn. 139

cHAPTER 0: INTRODUCTION

I wrote my first computer program in 1966, in Fortran. I had intended it
to compute and print the Fibonacci numbers up to 10,000: the elements of
the sequence 1, 1, 2, 3, 5, 8, 13, 21, ..., with each number after the second
being the sum of the two preceding ones. Of course it didn’t work:

I =20
J =20
K =1

1 PRINT 10, K
I=2J
J =K
K=1I2+J

IF (K - 10000) 1, 1, 2
2 CALL EXIT
10 FORMAT (I10)

Fortran programmers will find it obvious that this program is missing an
END statement. Once I added the END statement, though, the program
still didn’t compile, producing the mysterious message ERROR 6.
Careful reading of the manual eventually revealed the problem: the
Fortran compiler [was using would not handle integer constants with
more than four digits. Changing 10000 to 9999 solved the problem.
I wrote my first C program in 1977. Of course it didn’t work:

#include <stdio.h»>

main()
{

printf("Hello world");
}

This program compiled on the first try. Its result was a little peculiar,
though: the terminal output looked somewhat like this:

2 INTRODUCTION CHAPTER 0

% cc prog.c
% a.out
Hello world¥%

Here the % character is the system’s prompt, which is the string the sys-
tem uses to tell me it is my turn to type. The % appears immediately after
the Hello world message because I forgot to tell the system to begin a
new line afterwards. Section 3.10 (page 51) discusses an even subtler
error in this program.

There is a real difference between these two kinds of problem. The
Fortran example contained two errors, but the implementation was good
enough to point them out. The C program was technically correct — from
the machine’s viewpoint it contained no errors. Hence there were no
diagnostic messages. The machine did exactly what I told it; it just didn't
do quite what 1 had in mind.

This book concentrates on the second kind of problem: programs that
don’t do what the programmer might have expected. More than that, it
will concentrate on ways to slip up that are peculiar to C. For example,
consider this program fragment to initialize an integer array with N ele-
ments:

int i;
int a[N];
for (i = 0; i <= N; i++)
afi]) = 04
On many C implementations, this program will go into an infinite loop!
Section 3.6 (page 36) shows why.

Programming errors represent places where a program departs from
the programmer’s mental model of that program. By their very nature
they are thus hard to classify. I have tried to group them according to
their relevance to various ways of looking at a program.

At a low level, a program is as a sequence of symbols, or fokens, just as
a book is a sequence of words. The process of separating a program into
symbols is called lexical analysis. Chapter 1 looks at problems that stem
from the way C lexical analysis is done.

One can view the tokens that make up a program as a sequence of
statements and declarations, just as one can view a book as a collection of
sentences. In both cases, the meaning comes from the details of how
tokens or words are combined into larger units. Chapter 2 treats errors
that can arise from misunderstanding these syntactic details.

Chapter 3 deals with misconceptions of meaning: ways a programmer
who intended to say one thing can actually be saying something else.
We assume here that the lexical and syntactic details of the language are
well understood and concentrate on semantic details.

CHAPTER 0 INTRODUCTION 3

Chapter 4 recognizes that a C program is often made out of several
parts that are compiled separately and later bound together. This process
is called linkage and is part of the relationship between the program and
its environment.

That environment includes some set of library routines. Although not
strictly part of the language, library routines are essential to any C pro-
gram that does anything useful. In particular, a few library routines are
used by almost every C program, and there are enough ways to go wrong
using them to merit the discussion in Chapter 5.

Chapter 6 notes that the program we write is not really the program
we run; the preprocessor has gotten at it first. Although various prepro-
cessor implementations differ somewhat, we can say useful things about
aspects that many implementations have in common.

Chapter 7 discusses portability problems — reasons a program might
run on one implementation and not another. It is surprisingly hard to do
even simple things like integer arithmetic correctly.

Chapter 8 offers advice in defensive programming and answers the
exercises from the other chapters.

Finally, an Appendix covers three common but widely misunderstood
library facilities.

Exercise 0-1. Would you buy an automobile made by a company with a
high proportion of recalls? Would that change if they told you they had
cleaned up their act? What does it really cost for your users to find your
bugs for you? O

Exercise 0-2. How many fence posts 10 feet apart do you need to support
100 feet of fence? O

Exercise 0-3. Have you ever cut yourself with a knife while cooking?
How could cooking knives be made safer? Would you want to use a
knife that had been modified that way? O

cHaPTER 11 LEXICAL PITFALLS

When we read a sentence, we do not usually think about the meaning of
the individual letters of the words that make it up. Indeed, letters mean
little by themselves: we group them into words and assign meanings to
those words.

So it is also with programs in C and other languages. The individual
characters of the program do not mean anything in isolation but only in
context. Thus in

the two instances of the - character mean two different things. More
precisely, each instance of - is part of a different token: the first is part of
-> and the second is part of a character string. Moreover, the -> token
has a meaning quite distinct from that of either of the characters that
make it up.

The word token refers to a part of a program that plays much the same
role as a word in a sentence: in some sense it means the same thing every
time it appears. The same sequence of characters can belong to one token
in one context and an entirely different token in another context. The
part of a compiler that breaks a program up into tokens is often called a
lexical analyzer.

For another example, consider the statement:

if {(x > big) big = x;

The first token in this statement is if, a keyword. The next token is the
left parenthesis, followed by the identifier x, the “greater than” symbol,
the identifier big, and so on. In C, we can always insert extra space
(blanks, tabs, or newlines) between tokens, so we could have written:

