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cHAPTER 0: INTRODUCTION

I wrote my first computer program in 1966, in Fortran. I had intended it
to compute and print the Fibonacci numbers up to 10,000: the elements of
the sequence 1, 1, 2, 3, 5, 8, 13, 21, ..., with each number after the second
being the sum of the two preceding ones. Of course it didn’t work:

I =20
J =20
K =1

1 PRINT 10, K
I=2J
J =K
K=1I2+J

IF (K - 10000) 1, 1, 2
2 CALL EXIT
10 FORMAT (I10)

Fortran programmers will find it obvious that this program is missing an
END statement. Once I added the END statement, though, the program
still didn’t compile, producing the mysterious message ERROR 6.
Careful reading of the manual eventually revealed the problem: the
Fortran compiler [ was using would not handle integer constants with
more than four digits. Changing 10000 to 9999 solved the problem.
I wrote my first C program in 1977. Of course it didn’t work:

#include <stdio.h»>

main()
{

printf("Hello world");
}

This program compiled on the first try. Its result was a little peculiar,
though: the terminal output looked somewhat like this:
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% cc prog.c
% a.out
Hello world¥%

Here the % character is the system’s prompt, which is the string the sys-
tem uses to tell me it is my turn to type. The % appears immediately after
the Hello world message because I forgot to tell the system to begin a
new line afterwards. Section 3.10 (page 51) discusses an even subtler
error in this program.

There is a real difference between these two kinds of problem. The
Fortran example contained two errors, but the implementation was good
enough to point them out. The C program was technically correct — from
the machine’s viewpoint it contained no errors. Hence there were no
diagnostic messages. The machine did exactly what I told it; it just didn't
do quite what 1 had in mind.

This book concentrates on the second kind of problem: programs that
don’t do what the programmer might have expected. More than that, it
will concentrate on ways to slip up that are peculiar to C. For example,
consider this program fragment to initialize an integer array with N ele-
ments:

int i;
int a[N];
for (i = 0; i <= N; i++)
afi]) = 04
On many C implementations, this program will go into an infinite loop!
Section 3.6 (page 36) shows why.

Programming errors represent places where a program departs from
the programmer’s mental model of that program. By their very nature
they are thus hard to classify. I have tried to group them according to
their relevance to various ways of looking at a program.

At a low level, a program is as a sequence of symbols, or fokens, just as
a book is a sequence of words. The process of separating a program into
symbols is called lexical analysis. Chapter 1 looks at problems that stem
from the way C lexical analysis is done.

One can view the tokens that make up a program as a sequence of
statements and declarations, just as one can view a book as a collection of
sentences. In both cases, the meaning comes from the details of how
tokens or words are combined into larger units. Chapter 2 treats errors
that can arise from misunderstanding these syntactic details.

Chapter 3 deals with misconceptions of meaning: ways a programmer
who intended to say one thing can actually be saying something else.
We assume here that the lexical and syntactic details of the language are
well understood and concentrate on semantic details.
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Chapter 4 recognizes that a C program is often made out of several
parts that are compiled separately and later bound together. This process
is called linkage and is part of the relationship between the program and
its environment.

That environment includes some set of library routines. Although not
strictly part of the language, library routines are essential to any C pro-
gram that does anything useful. In particular, a few library routines are
used by almost every C program, and there are enough ways to go wrong
using them to merit the discussion in Chapter 5.

Chapter 6 notes that the program we write is not really the program
we run; the preprocessor has gotten at it first. Although various prepro-
cessor implementations differ somewhat, we can say useful things about
aspects that many implementations have in common.

Chapter 7 discusses portability problems — reasons a program might
run on one implementation and not another. It is surprisingly hard to do
even simple things like integer arithmetic correctly.

Chapter 8 offers advice in defensive programming and answers the
exercises from the other chapters.

Finally, an Appendix covers three common but widely misunderstood
library facilities.

Exercise 0-1. Would you buy an automobile made by a company with a
high proportion of recalls? Would that change if they told you they had
cleaned up their act? What does it really cost for your users to find your
bugs for you? O

Exercise 0-2. How many fence posts 10 feet apart do you need to support
100 feet of fence? O

Exercise 0-3. Have you ever cut yourself with a knife while cooking?
How could cooking knives be made safer? Would you want to use a
knife that had been modified that way? O






cHaPTER 11 LEXICAL PITFALLS

When we read a sentence, we do not usually think about the meaning of
the individual letters of the words that make it up. Indeed, letters mean
little by themselves: we group them into words and assign meanings to
those words.

So it is also with programs in C and other languages. The individual
characters of the program do not mean anything in isolation but only in
context. Thus in

the two instances of the - character mean two different things. More
precisely, each instance of - is part of a different token: the first is part of
-> and the second is part of a character string. Moreover, the -> token
has a meaning quite distinct from that of either of the characters that
make it up.

The word token refers to a part of a program that plays much the same
role as a word in a sentence: in some sense it means the same thing every
time it appears. The same sequence of characters can belong to one token
in one context and an entirely different token in another context. The
part of a compiler that breaks a program up into tokens is often called a
lexical analyzer.

For another example, consider the statement:

if {(x > big) big = x;

The first token in this statement is if, a keyword. The next token is the
left parenthesis, followed by the identifier x, the “greater than” symbol,
the identifier big, and so on. In C, we can always insert extra space
(blanks, tabs, or newlines) between tokens, so we could have written:



