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Preface

The theory of modular forms is an important subject of number theory. Also it has
very important applications to other areas of number theory such as elliptic curves,
quadratic forms, etc. Its contents is vast. So any book on it must necessarily make a
rather limited selection from the fascinating array of possible topics. Our focus is on
topics which deal with the fundamental theory of modular forms of one variable with
integral and half-integral weight. Even for such a selection we have to make further
limitations on the themes discussed in this book. The leading theme of the book is
the development of the theory of Eisenstein series.

A fundamental problem is the construction of a basis of the space of modular
forms. It is well known that, for any weight > 2 and the weight 1, the orthogonal
complement of the space of cusp forms is spanned by Eisenstein series. Does this
conclusion hold for the half-integral weight < 2?7 The problem for weight 1/2 was
solved by J.P.Serre and H.M.Stark. Then one of the authors of this book, Dingyi
Pei, proved that the conclusion holds for weight 3/2 by constructing explicitly a
basis of the orthogonal complement of the space of cusp forms. To introduce this
result and some of its applications is our motivation for writing this book, which is a
large extension version of the book “Modular forms and ternary quadratic forms” (in
Chinese) written by Dingyi Pei.

Chapter 1 can be viewed as an introduction to the themes discussed in the book.
Starting from the problem of representing integers by quadratic forms we introduce
the concept of modular forms. In Chapter 2, we discuss the analytic continuation of
Eisenstein series with integral and half-integral weight, which prepares the construc-
tion of Eisenstein series in Chapter 7.

In Chapters 3-5, some fundamental concepts, notations and results about modu-
lar forms are introduced which are necessary for understanding later chapters. More
specifically, we introduce in Chapter 3 the modular group and its congruence sub-
groups and the Riemannian surface associated with a discrete subgroup of SLy(R).
Furthermore, the concept of cusp points for a congruence subgroup is presented. In
Chapter 4, we define modular forms with integral and half-integral weight, calculate
the dimension of the space of modular forms using the theorem of Riemann-Roch.
Chapter 5 is dedicated to define Hecke rings and discuss some of their fundamental
properties. Also in this chapter the Zeta function of a modular form with integral or
half-integral weight is described. In particular, we deduce the functional equation of
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the Zeta function of a modular form, and discuss Weil’s Theorem.

In Chapter 6, the definitions of new forms and old forms with integral and half-
integral weight are given. In particular the Atkin-Lehner’s theory and the Kohnen’s
theory, with respect to new forms for integral and half-integral weight, are discussed
at length respectively.

In Chapter 7, we construct Eisenstein series. The first objective is to construct
Eisenstein series with half-integral weight > 5/2. The second objective is the con-
struction of Eisenstein series with weight 1/2 according to Serre and Stark. Then the
method of the construction for Eisenstein series of weight 3/2 is introduced, followed
by the construction of Cohen-Eisenstein series. For completeness, the construction of
Eisenstein series with integral weight, which is due to Hecke, is also given in the last
section of the chapter.

The Shimura lifting is the main objective of Chapter 8 where we follow the way
depicted by Shintani. Weil representation is introduced first and some elementary
properties of Weil representation are discussed. Then the Shimura lifting from cusp
forms with half-integral weight to ones with integral weight is constructed. Also the
Shimura lifting for Eisenstein spaces is deduced in this chapter.

In Chapter 9, we discuss the Eichler-Selberg trace formula for the space of modular
forms with integral and half-integral weight. The simplest case of the Eichler-Selberg
trace formula on SLy(Z) is deduced in terms of Zagier’s method. Then the trace
formula on a Fuchsian group is obtained by Selberg’s method. Finally the Niwa’s and
Koknen’s trace formulae are obtained for the space of modular forms with half-integral
weight and the group I'g(V).

In Chapter 10, some applications of modular forms and Eisenstein series to the
arithmetic of quadratic forms are described. We first present the Schulze-Pillot’s
proof of Siegel theorem. Then some results of representation of integers by ternary
quadratic forms are explained. We also give an upper bound of the minimal positive
integer represented by a positive definite even quadratic form with level 1 or 2.

Although many modern results on modular forms with half-integral weight are
contained in this book, it is written as elementarily as possible and it’s content is
self-contained. We hope it can be used as a reference book for researchers and as a
textbook for graduate students.

The authors would like to thank Ms. Yuzhuo Chen for her many helps. Also many
thanks should be given to Dr. Junwu Dong for his helpful suggestions and carefully
typesetting the draft of this book. We especially wish to thank Dr. Wolfgang Happle
Happle for carefully reading the draft of this book and correcting some errors in the
draft. The author Xueli Wang wishes to thank Prof. Dr. Gerhard Frey for stimulating
discussions and providing the environment of LE.M in Essen University, where part



Preface iii

of the draft has been done. Xueli Wang hope to give deepest gratitude for his lovely
and beautiful wife, Dr. Dongping Xu, who assumed all of the housework over the
years. Finally, the author Xueli Wang would like to dedicate this book to the 80th
birthday of his father.

Xueli Wang Dingyi Pei
Guangzhou

September, 2011
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Chapter 1

Theta Functions and Their Transformation

Formulae

In this chapter, we introduce theta functions of positive definite quadratic forms and
study their transformation properties under the action of the modular group.

Let a, b, c and n be positive integers with (a,b,¢) = 1. Denote by N(a,b,c;n) the
number of integral solutions (z,y,2) € Z?2 of the following equation:

az? + by +c2l=n.

Define the theta function by

[ee)
f(z) = Z ez’“"zz, z € H,
n=—0oo
where H is the upper half of the complex plane, ie., H = {z € C|Im(z) > 0}. It is
clear that 6(z) is holomorphic on H. Put

f(z) = 6(az)6(bz)6(cz),

then

oo

fz) =1+ Z N(a, b, c;n)e*™ "=,

n=1
Hence the number N(a,b,c;n) is the n-th Fourier coefficient of the function. This
shows that we know the number N(a,b,c;n) if the Fourier coefficients of f can be
computed explicitly. It is clear that there is a close relationship between f(z) and
the @ function. We shall see later that f(z) is a modular form of weight 3/2 from the
transformation properties of § under the action of linear fractional transformations.
After having studied some properties of modular forms, we shall resume this topic
later. Firstly, we shall consider some more general problems.

Now let ¢ be a positive real number, put

oo
o(z) = Z e~ m(n+e)’

n=—oo
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The series satisfies p(z + 1) = @(z). Hence it has the following Fourier expansion:

oo
(p(x): Z cme2nimz’

m=—o0
where
1 _ 0o . .
Crm :/ (p(l.)e—2mmzd$ =/ e—ntz —2mmz:dx = t—]/ze_nm /t‘
0 -00
Hence
oo
lp(.’.‘C) =t_1/2 Z e—nm2+2nimzl (11)
m=—o0

Taking z = 0 in equation (1.1) we get
4(it) = t~1/26(~1/(it)),

where §(z) = 8(z/2). Because 8(z) is a holomorphic function on the upper half plane,
we have that
6(—1/2) = (—-i2)Y%6(z), VzeH. (1.2)

For the multi-valued function z!/2, we choose arg(z/2) such that —x/2 < arg(z!/?) <

n/2. In general, we have that (2;22)'/? = :i:ziﬂz;/z

[ ”

where we take if one of the
following conditions is satisfied:

(1) Im(zl) <0, Im(Zz) <0, Im(zlzg) > 0;

(2) Im(z1) < 0, Im(22) > 0, Im(2122) < 0;

(3) 21 and 22 are both negative, or one of them is negative and the imaginary of
the other one is positive.

Otherwise we take “+7.

Let f(x1,---,zk) be an integral positive definite quadratic form in k variables.

Define the matrix \
A= o°f .
8(1&623_1

Then A is a positive definite symmetric integral matrix with even entries on the
diagonal. It is clear that

flzy, - 2) = %xAzT,

where z = (x1,--- ,zx) € ZF is a row vector, =T is the transposal of z. We now define
the @ function of f as

Op(z) =Y ) forall z € H.
x€Zk
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It is clear that

a0

Of(z) - Z enia:A:cTz — Z "'(f, n)e2ninz,
z€Z* n=0

where r(f,n) is the number of the solutions of f(z) = n with € ZF. 8(2) is

absolutely and uniformly convergent in any bounded domain of H, so it is holomorphic

on the whole of H.

Let N be the least positive integer such that all the entries of the matrix NA~1
are integers and the entries on the diagonal are even. This implies that det A is a
divisor of N*. Hence the prime divisors of det A are also prime divisors of N. But it
is clear that V|2 det A. So all the odd prime divisors of N are certainly prime divisors
of det A.

If we consider A as a matrix on the ring Z, of 2-adic integers, it can be proved
that there exists an inverse matrix S on Zs such that

sast— | 0 ,
0 0 e Ar

where A; is either an integer of 2Z, or a symmetric matrix (2ba 2bc) with a, b, ¢ € Zs.

It is clear that there is at least one A; which is a 1 x 1 matrix if k£ is odd. So we
get the following

Lemma 1.1  Ifk is odd, then 2|det A and 4|N; if k is even, then N|det A. If 4k,
then det A = 0 or1 mod 4; f k = 2 mod 4, then det A = 0 or 3 mod 4. Hence
(~1)*/?det A is always 1 or 0 modulo by 4 if k is even.

Let h be a vector in Z* such that hA € NZ* and define a function on H as follows

zmAmT
b(z; = —_—
(kAN = 3 o(555-),
m=h(N)
where e(z) = e?™2,

Proposition 1.1  We have the following transformation formula

9(—1/z;hy A, N) = (det A)~V/2(—iz)k/2 > e(hAKT /N?)0(z; k, A, N).
kmod N, kA=0(N)

Proof Let v be a positive real number, « = (z1,-- ,zx) € R*, and

9(z) = Y eliv(z + m)A(z +m)T/2).
meZk
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Then g(z) has Fourier expansion

g(z) = Z ame(z-mT), (1.3)

mezZ*+

where

am:/.../ g(m)e(—x'mT)d:c:/ / e(iveAzT /2 — & - mT)dz.
0<z;<1 —o0 —00

There exists a real orthogonal matrix S such that SAST is a diagonal matrix

diag{ai, -+ ,ax} with a; > 0(1 < i < k). We make a variable change z = yS in the
above integral and denote Sm™T = (uy,--- ,ux)T. Then
k o0
— H / e—n‘uajyz—zmujydy
'_ — 00

2 au2

= H / —:wa_., ”"‘3 ) EI‘JLdy

._._,U—k/2H _1/2 _va_,

=v‘k/2(det A)TV2gmamATImT /v, (1.4)

For any m € ZF, let k = mNA~! (mod N). Then kA = 0 (mod N) and m can
be written as (Nu + k)A/N(u € ZF). Inserting (1.4) into (1.3), we get

g(z) = v */2(det A)~1/? Z e(zAkT /N)

kmod N,
kA=0(N)

. Z e(zAuT +i(Nu + k)A(Nu + k)T /(2uN?)).

°

Since G(iv; h, A, N) = g(h/N), we get by the above equality

O(iv; h, A, N) =v™*(det A)"/2 Y~ e(hAkT/N?)0 (—rl—;k,A,N),
kmod N, 1w
kA=0(N)

which shows that Proposition 1.1 holds for z = —1/jv. This implies that the propo-
sition holds because 8(z; h, A, N) is holomorphic on the whole of H. a

Now we define the full modular group of order 2 as follows

s-{(2 4)

a,b,c,d € Z,ad — be = 1}.
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Let b
a
’)’=( c d>€SL2(Z).

We want to find the transformation formula of 6(z; h, A, N) under the transformation
z > y(z) = (az+b)/(cz+d). We first assume that ¢ > 0, then we get by Proposition
1.1 that

oahAm= 5 e (man (o ) )

m=h(N)

= Y e(agAg"/(2cN?))
g mod (cN),
g=h(N)

> e(—emAmT/[2(cz +d)(cN)?)
m=g mod {cN)
= (det A)~Y/2c*/2(—i(cz + d))*/?

> #(h,k)b(cz; k,cA, cN), (1.5)

k mod (cN),
kA=0(N)

where
&(h,k)y= > e(lagAg” +2kAgT + dkAkT]/(2cN?))

¢ mod (eN),
9=h(N)

and we also used the fact that mAm? is even for any m € Z*. Since ad = be + 1, it
follows

&(h, k)= Z e(a(g + dk)A(g + dk)T /(2cN?))e( - b[2gAkT + dkAKT]/(2N?))
¢ mod (cN),

g=h(N)
=e( — b[2hAkT + dkAk")/(2N?%)) &(h + dk,0),
which implies that @(h, k) is only dependent on k mod N. By equality {1.5) we get
8(v(z); h, A, N)(det A)/2ck/2(~i(cz + d))~*/?

= Z @ (h, k) Z 8(cz;g,cA,cN)
k mod (N), g mod (cN),
EA=0(N) g=k(N)
= Y &(h,k)b(zk A N).

k. mod (N),
kA=0(N)
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Substituting z by —1/z, we get by Proposition 1.1

o(zi“—‘Z; h, A, N) det Ac¥/?( —i(d — ¢/2)) T*/?(=iz)F/2
z —

= § : { § : e(lAkT/Nz)gb(h,k)}e(z;z,A,N). (1.6)
! mod N, \k mod N,
IA=0(N) kA=0(N)

Now suppose that d = 0(N). Since NA~! is an integral matrix with even entries
on the diagonal,

kAKT/(2N) = (N"'kA-NA™' . N~1AET)/2

is an integer. Hence

P(h, k) = e(—bhAET/N?) &(h,0)

and the right hand of (1.6) becomes

®(h,0) Y { 3 el bh)AkT/NQ)}Q(z; l,A,N).
!l mod N, k mod N,
IA=O(N) kA=0(N)
We now compute the inner summation of the formula above. There exist modular
matrices P, @, such that PAQ = diag{cy,--- ,ax}. Since NA~! is an integral matrix,
then ;| N(1 < i < k). Since

kA = (I —bh)A =0(N),

a direct computation shows that

> e((l—bh)AKT/N?) =
kmod(N),
kA=0(N)

{o, if 1 2 bh(N),
det A, if 1 = bh(N).

Now substituting (Z :z

) by (Z 2), we assume that ¢ = 0(V),d < 0. Then

we have that
0((az +b)/(cz + d); h, A, N) = (—i(c + d/2))*/?(~iz)*/?*W6(z; ah, A, N),  (1.7)

where
W=1d ™% 3" e(—bgAgT/(2|d|N?)).

gmod(ld|N),
g=h{N)
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Since Im(—i) < 0, Im(c + d/z) > 0, then (—i(c+ d/2))*/2 = (=i)*/2(c + d/z)*/2.
Similarly, since Im(—i) < 0, Im(2) > 0, we get (—iz)*/2 = (—i)*/22%/2, Again since
Im(cz + d) = cIm(z), it follows

2" 2(c+ d/z)*? = sgn(c)*(cz + d)F/?,

h
where @b Hezo
sgn(c) = -1, ife<o.
Therefore
(=i(c + d/2))*¥/?(—i2)*/? = (~isgn(c))*(cz + d)*/2. (1.8)

Since ad = 1(N), we can express g in W as adh + Nu with u € (Z/|d|Z)*. Then
W = e(abhART /(2N2))w(b, |d)), (1.9)

where
w(b, |d]) = |d|™*> Y e(—buduT/(2]d])).
umod|d|
If c=0or b=0, then d = —1 and hence w(b, |d|) = 1. Now suppose that bc # 0
and d is an odd. We substitute z by z + 8m(m € Z) in (1.7) such that d + 8me < 0.
By (1.8) and (1.9) we know that

w(b, |d|) = w(b + 8ma, [d + 8mc]).

Because d and 8¢ are co-prime, we can find an integer m such that —d — 8me is an
odd prime which will be denoted by p. Let 3 = —(b+ 8ma). Then

w(b, |d)) = w(-8,p) = p™*% Y~ e(BuduT/(2p)).

umodp

Suppose that 8 = 2§'(p). Since ¢ = 0(N), d and ¢ are co-prime, then pand N
are co-prime, and hence p and det A are co-prime. There exists an integral matrix S
such that det S is prime to p and SAS? is congruent to diag{q1,-- ,qr} modulo p.
By Gauss sum, we have that

k k .
wb.ld) =711 (Z e(ﬁ'qiﬁ/p)) =gy (L de),

where (%) is the Legendre symbol

(q) _ { 1,  if ¢ is a quadratic residue modulo p,

D —1, otherwise.
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The symbol e, is defined for all odd integers:

|1, ifn=1(4),
=14, ifn=3(4)

It is clear that €, = e_q = ie;'. Since all prime divisors of det A are divisors of

N, p= —d(8N),
(de;A> - (de—tdA)‘

Since (i :5) € SLy(Z), i.e., fc—ap =1, we get 20'c = 1(p). Hence

(3)-()- ()

Let a be an integer, b # 0 be an odd. We define a new quadratic residue symbol

(%) satisfying the following properties:

(1) (%) =0if (a,b) # 1;

@ (g) -1
a

(3) If b > 0, then (2) is the Jacobi symbol, ie., if b = Hpr, then (—) =

N b b
;) |
(4) If b < 0, then (%) = sgn(a) (I%I)

Hereafter, the symbol (%) will be defined as above. Then we have

d
2cdet A) (1.10)

wib ) = 5 egnie))* (225

and (1.10) holds for ¢ = 0 or ¢ # 0.
Define a subgroup of the full modular group as follows

Io(N) = {(‘C’ 3) € SLy(Z)|e= O(N)}.

" b .
Proposition 1.2 Let v = (: d) € Io(N). If k is odd, then we have

)(z—c)kggk(cz +d)*/28(z; ah, A, N),

d
(1.11)

det A

8(1(2): h, 4, N) = e(abh 4hT/(2N%) (5
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If k is even, then we have
—1)*/2det A
0(v(2); by A, N) = e(abh ART /(2N?)) ((—)—d—e——)(cz + d)¥/20(z; ah, A, N),
(1.12)

Proof  First assuming that k is odd. By Lemma 1.1, N = 0(4). Hence d is odd.
For d < 0, inserting (1.8), (1.9) and (1.10) into (1.7), we can get (1.11) immediately.
For d > 0, substituting ¥ by —v and noting that (—v)(z) = v(z), we have

0(v(2); by A, N) = e(abh ART /(2N?)) (de;A) (_Tzd?)k

x -5 (—cz — d)*20(z; —ah, A, N).
It is clear that 8(z; —ah, A,N) = 6(z;ah, A, N). If c =0, then d = 1 and
—2c\* - k/2 _ ik k/2
——_7 E_d(—cz—d) =1 (—1) = 1.
If ¢ # 0, we have

k k
() mitees 2= (st (S5°) mbeg(mant s +

2c\*
zegk (E) (cz + d)*/2.

This shows that (1.12) holds also for d > 0. Now assuming that k is even. If d is
odd, we can get (1.12) by proceeding similarly as above. If d is even, then c is odd,
and NV is also odd. By the result for the case d odd, we have

az+alN +b
9 - .
(Frwranan)

a -1 et
_ ( bhAhT) )¥/2 det, A
AP N +d

) (cz+cN +d)*?4(z;ah, A, N),  (1.13)

where we used the fact that hAhT/(2N) is an integer. By Lemma 1.1 and Lemma,
1.2 which will be proved later, we have

((_i)J):r/id;tA) _ ((—l)kjdetA> |

(=1)/2det A
detArd ) U
stituting z by z — N in (1.13) we get (1.12). ]

where d is even. So the right hand side of above is equal to (



