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Preface

“God made the integers; all else is the work of man”!. For centuries, the ancients
were satisfied with using natural numbers called simply “numbers”. What we call
irrational numbers was not included into this notion by the Greeks. Not even ratio-
nal fractions were called numbers.

Hence, numbers were conceived as discontinuous, while magnitudes were con-
tinuous. The two notations appeared, therefore, entirely distinct. The transfer from
numbers to magnitudes (to lengths, for example) was a difficult and important step.
Perhaps, the most dramatic confrontation of the notions exhibited in Zeno’s para-
doxes. One of them says: “Achilles cannot overtake a tortoise. Why? Achilles must
first reach the place from which the tortoise started. By that time, the tortoise will
have moved on a little way. Achilles must then traverse that, and still the tortoise
will be ahead. He is always nearer, yet never makes up to it”. The paradox resolu-
tion became possible only after extending the concept “number” over the whole real
axis.

The real numbers have formed a basis of classical analysis whose major concept
is the continuity. In frame of this conception, the set of natural and even rational
numbers is vanishing (in cardinality) as compared with the continuum of real num-
bers. In numerical calculations, we use rational numbers as approximations to real
ones, but namely irrational numbers reflect the real world. Nobody can make a rod
with rational length and nobody can check that the length is rational.

Of course, when we are dealing with a set of isolated objects we use the natural
numbers for counting the objects. However, if the objects are numbers and we con-
sider the sum of the numbers, the situation may change. Thus, the number 7 in the

expressions
n

Yn=XiAX X = Y X
=1

and

! 'm very grateful to Prof. V. Kiryakova for her remark that this phrase is due to Leopold Kro-
necker (1886).
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needs no comments, it is natural. But if the numbers x; are identical (and positive),
these operations can be easily continued on the whole real axis: n = {1,2,3,...} —
V € (—oo,00):

yv=Vvx, zy=x", VeER.

The famous Euler invention called Euler’s Gamma function
F(V):/ e *x"ldx, v>0,
0

Fn+l)=n!, n=1.2-3...-

has played a crucial role in extending the concept “number of operations” on the
noninteger values. With this function, there was made a scientific breakthrough in
the differential calculus, which enriched it with differentiation and integration of
fractional orders called shortly fractional calculus. The foundation of fractional cal-
culus is connected with the names of Riemann, Liouille, Weyl, Griinwald, Letnikov
and others. Though the first works in this direction were made of about two centuries
ago, these ideas had not found any practical applications for a long time. However,
the situation has been changed dramatically during a couple of last decades, while
about 3 thousand works were published on the subject.

For better understanding of what the extension of this concept can bring, let us
consider popular differential equations of theoretical physics of the form

D) | )
am TP gm =F ©0.1)

where x, t are space-time variables, a, b, and F are given functions of x and ¢, and
m, n=20,1,2,... are integer numbers. If one of the numbers, say n, is zero, the
corresponding variable x becomes a plain parameter. Omitting it, we arrive at the
ordinary differential equation:

L0

() =

Putting n = 1 in Eq. (0.1) and interpreting f(¢) as a velocity of a material point
performing one-dimensional motion under action of the force F — bf, we recognize
here the simplest version of the Newton equation. If a,b > 0, then the term —bf
can be interpreted as a friction force, and we meet the relaxation problem. When
a denotes mass and f means the coordinate of a particle, we again see the New-
ton equation describing one-dimensional motion along the x-axis. This time, the
term —bf means the elastic force and the equation describes the harmonic oscillator
driven by the force F (assuming b = const).

Choosing m = n = 1, we obtain a one-dimensional continuity equation. This is
the simplest equation of partial differential equations of mathematical physics. The
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other popular versions of equations of mathematical physics are represented in Ta-
ble 0.1. They are well-known and do not need any comments. In the last line, you
can see the equations containing time- and space-derivatives of fractional orders.
These operations are significantly less familiar to the majority of physicists and en-
gineers. One could pay no serious attention to such exotic mathematical construc-
tion, but only one glance at Fig. 0.1 may shake the scepticism: we see that the set of

Table 0.1
m,n 1D-equations 3D-equations Phys. sense | Math. type
dv dv
1, —_ = -—_— = -
0 a| o +bv=F |a] o +bv=F DamPed
motion
d*x d*r
2,0 — = - = illati -
|a] Fra bx=F |a| 7 +br=F Oscillation
a a(b a
1,1 |a | f ( xf) =F ia]a—j: +V(bf)=F | Continuity -
1,2 la| == — |b |92f = |a}3—f —|p|V*f=F | Diffusion Paraboli
’ a: ox? ot = arabotie
aZf aZf 2
2,2 |a| Fro 1] 52 = F |a] 312 ~ ||V f=F Waves Hyperbolic
2f
0,2 af+b55 =F af +bVif=F Static fields |  Elliptic
M, v 2 No
o f v o
. non- asi +b (8 3 ) f=F Bﬂ{ +bAV2f=F ? classified
integers t>0, —co<x <00 yet

v
} Wave

Ballistic  Diffusion

1 2 u

Fig. 0.1 Continuous manifold of fractional partial equations.
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well-known and well-investigated differential equations of mathematical physics is
represented by only a few points on (i, v) diagram, while the continuous set of all
other points of the whole (1, v)-plane is a terra incognita, which can not but attract
attention of graduate and postgraduate students, promising scientists and young en-
gineers. This is the readership the book is addressed in the first place. Nevertheless, I
hope that it can attract the attention of more experienced researchers, both physicists
and mathematicians, as comparatively new tools for investigating and modeling of
complex natural processes.

I was 55 years old when I went on a trip for years over this “fractional” land and
found many treasures there: about three thousand articles using the tools for solving
different problems in physics and engineering have been published during the last
two decades. They include

inverse mechanical problems
stochastic kinetics and dynamical chaos
motion in viscous fluid

heat flow spreading
electrochemistry of electrodes
percolation through porous media
rheology of viscoelastic materials
electrical and radio engineering
plasma physics

quantum optics and nanophysics
astrophysics and cosmology
biophysics and medicine

Fortunately, our group managed to participate in developing fractional approach
to description of anomalous (dispersive) transport in disordered semiconductors,
non-Debye relaxation in solid dielectrics, penetration of light beam through a tur-
bulent medium, transport of resonance radiation in plasma, blinking fluorescence of
quantum dots, subrecoil laser cooling of atoms, penetration and acceleration of cos-
mic ray in the Galaxy, large-scale statistical cosmography and solving some other
problems. These investigations allowed us to become aware of deep links between
fractional calculus, non-Gaussian Lévy-stable statistics and stochastic fractals. The
presence of a time-fractional derivative in the equation is interpreted as a special
property of the process under consideration called the memory, the after-effect, or,
when we handle with a stochastic process, the non-Markovian property. Fractional
derivatives with respect to coordinates reflect a medium with inhomogeneities of
some special kind called selfsimilar inhomogeneities or fractals. We meet such
structures in turbulent flows, plasma, and interstellar media.

Like many my colleagues, I’'m convinced that the fractional derivative, or, as it is
often called, the fractional differintegral given by the expression

SV = Ty gy G- @
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withn—1<v<nifv>0and n=0if v <0, is much more than merely a se-
quence of differential and special integral operators®. Important properties of Nature
underlie this mathematical concept. Starting to write this book, I decided to begin it
with discussion of these properties, enveloping, in my opinion, heredity, nonlocal-
ity, selfsimilarity, and stochasticity. This is why the first three chapters of the book
are united into the first part “Background” which contains description of various
natural phenomena demonstrating such properties.

Chapter 1 contains a modern exposition of the Volterra heredity concept whose
main tool is the integral operation

10~ [ K@ o€

with the kernel K(x,&) interpreted as a memory in case x and & are time, or as
nonlocality in case the variables are spatial coordinates. The variety of physical
processes including mechanical, molecular, hydrodynamical, thermodynamical phe-
nomena demc.strating hereditary properties are described in this chapter.

In Chapter 2 we review physical processes characterized by power-type memory
functions and basic mechanisms generated this property. This list may shake the
opinion that the exponential function is the queen-function of theoretical physics
and show that without power functions like without maids of honor the queen court
would be more tiresome.

Chapter 3 opens a wide panorama of stochastic processes which shows that prob-
abilistic long tails of power type results from selfsimilarity of the processes and the
latter is connected with existence of limit distributions, namely with the Lévy-stable
laws. The reader will go into the fractional Brownian motion continuous-time ran-
dom walk processes, fractional Poisson process and walking on fractals.

The second part of the book, “Theory”, contains the elements of fractional cal-
culus theory with review of various fractional equations, and their analytical and
numerical solutions.

Chapter 4 serves as a mathematical introduction to fractional calculus containing
basic definitions of fractional operators, their properties and rules of applications.
Readers can recognize many of them as corresponding generalization of well-known
analogous from integer-order calculus such as the Leibnitz rule or the Taylor for-
mula.

Chapter 5 shows how equations with fractional derivatives are solved. The reader
will meet the description of some analytical methods of solution and many examples
of their applications to ordinary and partial fractional equations. Of course, this
review can not pretend on a strict and exhaustive exposition, but it will be useful for
physicists and engineers as a first acquaintance.

Chapter 6 contains an introduction to numerical methods of solving fractional
equation. Starting with the fractional difference operators and based on this con-

2 Here are two remarkable quotations: “The fractional calculus is the calculus of the XXI century”
(K. Nishimoto, 1989) and “We may say that Nature works with fractional time derivatives” (S.
Westerlund, 1991).
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cept the Griinwald-Letnikov definition of fractional derivatives, the reader is ac-
quainted with the finite-difference methods of computing fractional integrals, frac-
tional derivatives, and fractional equations of various kinds. The last section of this
chapter is devoted to some aspects of Monte Carlo techniques.

The third part, opening the second volume of the book, exposes a wide field of
applications of fractional calculus in modern physics including mechanics, hydro-
dynamics, viscoelasticity, thermodynamics, electrodynamics, plasma physics, quan-
tum physics, and cosmic ray physics.

Finally, the fourth, last part of the book contains various auxiliary materials (spe-
cial functions, notation of fractional derivatives, main formulas of fractional calcu-
lus, tables and graphs of some functions, which are playing a special role in the
solution of fractional equations).

Ulyanovsk (Russia), March 2012 Vladimir V. Uchaikin
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