AN TEERBEE (LK)

Microwave Circuits for 24GHz Automotive Radar in

Silicon-based Technologies

H TR AR 2dGHz 5 F ik 7k B i

Vadim Issakov

@4 4 % B &

| A3



(EEFREEBREE) £

20 tH42 90 SERLE, FEMFHEARARAMRLTFHHRAE, HELTSL
AW — 2 2R, UBHRT . BN, BEMNEEARAIRRMFEEER, &
AR cHLFEPRRER, BEERER. MATR HREER, FEHK
AREZBEHSHTREET . R, &5, MK, BRESLKAR, 2T £
B Bk, BBIR . MEMRFERFEAT WK 78k HERKFEAR
PR YIERAT . UL I BEABRMLEXM, WREEE—IEXNES
H . EfrEs MR rERERS. £FE, FETLERREF ZRET
HAEERENMA, RVERSFEESES L. AW, PEAGEERSEF
BARERKFIERE, FRERELT HBIEFHRAF, Hit, REkREREER
FHAR BN EBTEEE AR

EHERENGEEEAEF R REER, FEAZITEEMTRERAGATH
WRFERSE 1, Hoh, RNTEAER L AR TAEEM TRERARGEERFT
RIBHIFREE, IERXHME BRI FFSERENE, P hafS5EBEAMRKH
AR TAE

MR R IR, BR T BBt R RA B R BR S, 51t
ESMORT KR R KA MR . AT, BESIMIFEETIHBIEN, &
FEEH R U R BRAT A B IR, REREERSEERN. B
F AL S R E M2 AL R EAE, ERENEFEERARK KR
TAEEMTEEARARBUBKKMEEE, Xt THEshBEEF RSB AR SR B
SHERTAARE,

BB RRALTE 2 AR T KB AR B, S REWIE. A%k,
S5\ B T HE 30 ASMRAS, KK LA, H—REEMBBEE, B
T CRRTENETENEE, FA SRR RE SIS EHER, KSHE
2005 fEJE AR A, J1sR" BRE. ARHT . SFHR" . ERATEX AR



TR R — BB AT R AR

B, XHH RS SREEAR 5, LA TARE R kst T
o XMTF—EEHEB . WRHA . B AERZ 15 4538 L% B B SCHAR,
RAF TR ER G, R, ROFETEERBFORN, Do
MsEEN R TAE

BZ, BXBE RS | AR X — 2R AN R, HBREX—T

((FCET WN:) %

P EAMFREL
TEIEKRKEL:
2006 4F 12 A



Preface

There are continuous efforts focussed on improving road traffic safety worldwide.
Numerous vehicle safety features have been invented and standardized over the
past decades. Particularly interesting are the driver assistance systems, since these
can considerably reduce the number of accidents by supporting drivers’ perception
of their surroundings. Many driver assistance features rely on radar-based sensors.
Nowadays the commercially available automotive front-end sensors are comprised
of discrete components, thus making the radar modules highly-priced and suitable
for integration only in premium class vehicles. Realization of low-cost radar front-
end circuits would enable their implementation in inexpensive economy cars, con-
siderably contributing to traffic safety.

Cost reduction requires high-level integration of the microwave front-end cir-
cuitry, specifically analog and digital circuit blocks co-located on a single chip. Re-
cent developments of silicon-based technologies, e.g. CMOS and SiGe:C bipolar,
make them suitable for realization of microwave sensors. Additionally, these tech-
nologies offer the necessary integration capability. However, the required output
power and temperature stability, necessary for automotive radar sensor products,
have not yet been achieved in standard digital CMOS technologies. On the other
hand, SiGe bipolar technology offers excellent high-frequency characteristics and
necessary output power for automotive applications, but has lower potential for re-
alization of digital blocks than CMOS.

This work presents the design, implementation, and characterization of mi-
crowave receiver circuits in CMOS and SiGe bipolar technologies. The applicability
of a standard digital 0.13 pm CMOS technology for realization of a 24 GHz narrow-
band radar front-end sensor is investigated. The unlicensed industrial, scientific and
medical (ISM) frequency band at 24 GHz is particularly interesting for radar applica-
tions, due to its worldwide availability and the possibility of inexpensive packaging
in this frequency range.

The low-noise amplifier (LNA) and mixer receiver building blocks have been
designed in CMOS and bipolar technologies. These building blocks have been in-
tegrated into receiver and transceiver front-ends. The performance stability of the
circuits is compared over a very wide temperature range from -40 to 125 °C. Addi-
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tionally, ESD protection techniques are considered. Further, advanced modeling and
de-embedding techniques, required for accurate circuit characterization, are inves-
tigated. The presented circuits are suitable for automotive, industrial and consumer
applications, as e.g. lane-change assistant, door openers or alarms.

This manuscript is based on the dissertation entitled Microwave Circuits for
24 GHz Radar Front-End Applications in CMOS and Bipolar Technologies™ sub-
mitted to the University of Paderborn. The research work was supported under the
German BMBF funded project EMCpack/FASMZS 16SV3295 and was carried out
in close collaboration with Infineon Technologies AG, Neubiberg, Germany.
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Chapter 1
Introduction

Increasing road traffic safety is a major objective of governments across the world.
In particular, the European Union (EU) has set a challenging objective of halving the
number of road accident victims by 2010 [1]. Active on-board safety features offer
an approach with a high potential for achieving this target. It has been observed over
the past decades that the decrease in the number of victims is related to technologi-
cal innovations of the automotive safety, such as seatbelts, anti-lock braking system
(ABS), airbags or electronic stability programme (ESP), as shown in Fig. 1.1 (data
source: ADAC). Future generations of active safety equipment will be based on the
advanced driver assistance systems (ADAS) including e.g. adaptive-cruise control
(ACCQC), lane-change assistant, collision avoidance systems and parking aids. Imple-
mentation of these systems can considerably reduce the number of road accidents
and mitigate the consequences. However, the low integration level and high cost of
the commercially available modules to date, hamper the mass volume integration
and standardization of these systems. Thus, there are research efforts, supported by
the EU [2], to develop low-cost driver assistance systems that could be suitable also
for low-budget cars.

The cost reduction can be achieved by high level integration of the building
blocks on a single chip or in a package, referred to as system on chip (SoC) and
system in package (SiP), respectively. Silicon-based technologies as CMOS or SiGe
offer high on-chip integration capability and competitive performance compared to
the III-V semiconductors as e.g. gallium-arsenide [3], which have been dominating
the discrete microwave components market.

The standard digital CMOS process is particularly attractive, as it enables the
high-level integration of analog and digital blocks. Recent advances in CMOS tech-
nology have enabled it to become an inexpensive alternative for realization of
high-frequency integrated circuits. However, the required output power and tem-
perature robustness, particularly for automotive radar sensor products, have not yet
been achieved in standard digital CMOS technologies. Furthermore, metal-oxide-
semiconductor (MOS) transistors suffer from very high flicker noise corner fre-
quencies compared to bipolar transistors, making it difficult to build a direct down-

V. Issakov, Microwave Circuits for 24 GHz Automotive Radar in Silicon-based 1
Technologies, DOI 10.1007/978-3-642-13598-9_1, © Springer-Verlag Berlin Heidelberg 2010
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Fig. 1.1 Road traffic statistics in Germany.

conversion receiver in CMOS. This principle has the advantage of simplicity com-
pared to the double-conversion or ”’sliding-IF” topologies.

The SiGe bipolar process offers transistors with excellent high-frequency charac-
teristics, sufficient output power for automotive radar applications and the required
robustness, but has the disadvantage of lower integration capability compared to
CMOS. The use of a BICMOS instead of a pure bipolar process resolves the inte-
gration drawback, but increases the costs and complexity.

The aim of this work is the realization of integrated receiver front- ends for
narrow-band radar sensors at 24 GHz in Infineon’s CMOS and SiGe technologies.
Both technologies are automotive-certified and offer moderate mask costs at the
present market volumes. These sensors can be useful for multiple car safety fea-
tures such as lane-change assistant, side-crash detection, rear-collision warning or
Stop and Go assistant, as presented in Fig. 1.2. Presently, some of the features are
implemented using various approaches, such as CCD or CMOS cameras, ultrasonic
sensors or lidar. Highly-integrated low-cost radar sensors may offer cheaper alterna-
tive for these features. Furthermore, realization of cost-effective sensors can enable
their implementation in consumer and industrial applications as e.g. door openers,
motion sensors and alarms.

Currently the market is dominated by ultra-wideband (UWB) 24 GHz short-
range radar (SRR) sensors [4], [5]. However, according to Electronic Communi-
cations Committee’s (ECC) decision, these sensors are allowed on the market in the
EU only until July 2013 [6]. The allocated frequency range 21.625 —26.625 GHz
is only a temporary solution, whilst 79 GHz is intended for future SRR applica-
tions. However, the unlicensed industrial, scientific and medical (ISM) frequency
range 24 — 24.25 GHz is an attractive alternative for mid-range radar sensors due to
a higher allowable transmit power. Furthermore, it is still possible to use standard
inexpensive packaging solutions [7], classical mounting techniques and moderately-
priced measurement equipment at this frequency range. A frequency-modulated
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Fig. 1.2 Radar-based automotive safety features.

continuous-wave (FMCW) radar in the 24 GHz ISM band offering a 70 m outreach
has been reported in [8].

Numerous publications report 24 GHz receivers in CMOS [9], [10] or SiGe [11],
[12] technology. However, there are only a few publications that present fully ESD-
protected receiver front-ends [13]. Sufficient ESD robustness and performance sta-
bility over a wide range of temperatures are required for hostile environment such
as in automotive applications. Furthermore, there are few publications in the liter-
ature that offer direct comparison of receiver building blocks realized in different
technologies [14].

This work presents the design, implementation, and characterization of build-
ing blocks and integrated receivers for 24 GHz narrow-band radar applications rea-
lized in CMOS and SiGe technologies. The performance stability of the circuits
is compared over the extended automotive temperature range from -40 to 125 °C.
The challenges posed to circuit design due to high ESD robustness requirements
and corresponding circuit techniques are addressed. Furthermore, innovative circuit
topologies for LNA, mixer and transceiver integration are proposed. Additionally,
novel modeling and measurement techniques are presented.

This manuscript is organized as follows: chapter 2 provides an overview of radar
principles, system architectures and the design challenges. The circuits in this work
are realized in Infineon’s CMOS and SiGe:C technologies, which are described in
chapter 3. Modeling and simulation techniques are presented in chapter 4. Chapter 5
presents measurement techniques and discusses challenges of on-board measure-
ment of differential devices. Circuit design and the experimental results of the build-
ing blocks and of the integrated receivers are described in chapter 6. Transceiver
considerations and implementations are presented in chapter 7. Finally, chapter 8
summarizes the results and concludes this work.
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Chapter 2
Radar Systems

Automotive safety systems require information about the objects in the vicinity of
the vehicle. These data are usually obtained by sensing the surroundings. A typical
sensor system usually transmits a signal and estimates the attributes of the available
targets, such as velocity or distance from the sensor, based on the measurement of
the scattered signal. The signal used for this purpose in radar (radio detection and
ranging) systems is an electromagnetic (EM) wave at microwave frequencies. The
main advantage of radar systems compared to other alternatives such as sonar or
lidar is the immunity to weather conditions and potential for lower cost realization.

Section 2.1 describes the principle of radar. There are two main operation princi-
ples, continuous wave (CW) and pulsed. The latter is not treated within this scope,
since the frequency regulations in the ISM band result in a limitation on the ab-
solute transmitter power. Thus, pulsed radar would result in a lower SNR due to
a lower duty cycle compared to the CW operation. Radar operation is discussed in
sections 2.2 - 2.4. Frequency regulations around 24 GHz are described in section 2.5.
Typical radar architectures and circuit related challenges are presented in section 2.6.
Section 2.7 provides an overview of the automotive radar systems and their appli-
cation for car safety. Finally, section 2.8 concludes this chapter with considerations
on technology features needed for radar realization.

2.1 Radar Principle

Radar systems are composed of a transmitter that radiates electromagnetic waves
of a particular waveform and a receiver that detects the echo returned from the
target. Only a small portion of the transmitted energy is re-radiated back to the
radar, which is then amplified, down-converted and processed. The range to the
target is evaluated from the travelling time of the wave. The direction of the target
is determined by the arrival angle of the echoed wave. The relative velocity of the
target is determined from the doppler shift of the returned signal.

V. Issakov, Microwave Circuits for 24 GHz Automotive Radar in Silicon-based 5
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For automotive radar applications the separation between the transmitter and re-
ceiver is negligible compared to the distance to a target. Thus, these systems are
monostatic in a classical sense. However, the automotive radar systems are usually
referred to as bistatic when two separate antennas are used for transmit and receive
and monostatic when the same antenna is used for these functions, as depicted in
Fig. 2.1. The latter configuration requires a duplexer component to provide isolation
between transmitter and receiver. This is usually realized using expensive external
bulky transmit/receive (T/R) switch or circulator components. The solution of using
hybrid ring coupler [1] offers a cost advantage at the expense of lower performance
due to higher losses and increased noise figure.

P, G,

(a) Monostatic radar (b) Bistatic radar

Fig. 2.1 Radar configurations.

2.2 Radar Equation and System Considerations

The radar equation provides the received power level as function of the character-
istics of the system, the target and the environment. The well-known bistatic radar
equation [2] for the system in Fig. 2.1(b) is given by

p,_ PAxhao .

ATRAAZ Ly,
where P, is the received power, P, is the transmitted power, Aer and Ae are the
effective area of the receive and transmit antennas, respectively, R is the distance to
the target, o is the radar cross-section (RCS), defined as the ratio of the scattered
power in a given direction to the incident power density and Lgys is the system
loss due to misalignment, antenna pattern loss, polarization mismatch, atmospheric
loss [3], but also due to analog to digital conversion and fast Fourier transform
(FFT) windowing. Taking into consideration that the effective area of the receive
and transmit antenna is related to the wavelength A and to the antenna gain G, and
G, as Aer = G, A /4w and Ag = G.A% /Am, respectively, the radar equation can be
rewritten as
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Based on the system characteristics and the noise floor of the receiver a certain

minimal signal power level Py, is required in order to detect the target. Thus,
from (2.2) the maximum achievable radar range can be calculated as follows

1/4 :

P.G,G:A%c

Roax=|—5———| . 2.3)
(47t) Pr,mianys

Furthermore, in most practical designs a minimal signal to noise ratio (SNR) at
the output of the receiver SNR, min is considered in order to ensure high probability
of detection and low false-alarm rate. Typically, SNR values of higher than 12 dB
are required. The noise factor of a receiver is defined as

(2.2)

_ Si/N;i
So/N,’

(2.4)

where S; and S, are the input and output signal levels, respectively, N, is the noise
level at the receiver output and A, is the input noise level, given by

N; =ksTB, (2.5)

where B is the system bandwidth, kg is the Boltzmann constant and T is the temper-
ature in Kelvin. Taking into consideration that there is an additional processing gain
due to the integration over several pulses, approximately given by Gin. = Tcpr- B,
where Tcpy is the coherent processing interval (CPI), the maximum radar range in
(2.3) can be rewritten as a function of SNR,, min as follows

1/4
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The attenuation for the propagation of the electromagnetic waves at 24 GHz is
about 0.15 dB/km [4]. Taking into consideration that the typical range for auto-
motive radar sensors is up to 200 m, the contribution of the atmospheric attenuation
to Lgys is negligible. Even under heavy rain or fog conditions the attenuation over
these distances is in the range of few decibels.

The RCS of typical targets in automotive applications ranges from 0.1 to 200 m?.
The antenna gain is usually in the range of 15 - 25 dBi. Antennas are typically
realized as patch antenna arrays for beam shaping. Their large size at 24 GHz limits
the dimensions of radar modules.

Equation (2.6) can be rearranged for the noise factor F. Plugging in the smallest
RCS and the largest required distance of operation results in the required receiver
noise figure. For example, for an object with a ¢ of 0.1 that has to be detected
at a maximal distance of 100 m with transmit and receive antenna gains of 20 dB,
transmitter power of 0 dBm, the system losses of 3 dB, the CPI time of 2 ms and
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minimum required SNR after the FFT of 12 dB, the required receiver front-end
noise figure is 10.75 dB. For a typical narrow-band 24 GHz system a single side-
band (SSB) noise figure (NF) of less than 10 dB is needed. The NF is related to the
noise factor in (2.4) as NF = 10- log(F). The gain of a receiver front-end is less
crucial, since it can be compensated in the baseband stage. However, it still has to
be above 10 dB for a low receiver NF, due to noise figure cascading.

Another limiting case, referred to as the blocker case, is the scenario of a large
target with maximum RCS being present very close to a radar at a minimal dis-
tance of operation. This sets the requirement on the front-end linearity in terms
of input-referred 1dB compression point (IP1dB), which should be typically above
—15 dBm. Combination of both mentioned limiting cases results in a requirement
on the receiver’s dynamic range (DR), which usually should be above 70 dB.

2.3 CW and Frequency-Modulated Radar

2.3.1 Doppler Radar

A classical continuous wave (CW) or Doppler radar implementation uses a fixed
transmit frequency to detect a moving target and its velocity. It is based on the
Doppler frequency shift. If there is a non-zero relative velocity v, between a radar
transmitter sending a signal at frequency fp, and a moving target, the returned signal
has frequency fo + f4, where fy is the Doppler frequency shift given by

2v,
Ja= —:—fo, 2.7

where c is the speed of light. The relative velocity v, of a target is determined by the
velocity component along the line-of-sight of the radar and is given by

Vr =V,C080, (2.8)

where v, is the actual velocity of a target and 0 is the angle between the target
trajectory and-the line-of-sight, as depicted in Fig. 2.2.

It can be observed from (2.8) that for an acute angle 6 < 90°, corresponding to
an approaching target, the Doppler shift is positive f; > 0 and for an obtuse angle
@ > 90°, corresponding to a receding target, the Doppler shift is negative fz < 0.
Furthermore, for 8 = 90° the Doppler shift is zero. Thus, the velocity component
perpendicular to the line-of-sight cannot be determined.



