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Preface

It has been more than twenty years since September 2, 1982, when I signed the contract
to develop what turned into the first edition of this present textbook. At that time the
idea of further editions never crossed my mind. Consequently, I continue to find myself
simultaneously very humbled and very pleased with the way this textbook has been received
by so many instructors and especially students. The first four editions of this textbook have
found their way into many colleges and universities here in the United States. They have
also been used in other nations such as Australia, Canada, England, Ireland, Japan, Mexico,
the Netherlands, Scotland, Singapore, South Africa, and Sweden. I can only hope that this
fifth edition will continue to enlighten and challenge all those who wish to learn about some
of the many facets of the fascinating area of mathematics called discrete mathematics.
The technological advances of the last four decades have resulted in many changes
in the undergraduate curriculum. These changes have fostered the development of many
single-semester and multiple-semester courses where some of the following are introduced:

1. Discrete methods that stress the finite nature inherent in many problems and structures;

2. Combinatorics — the algebra of enumeration, or counting, with its fascinating inter-
relations with so many finite structures;

3. Graph theory with its applications and interrelations with areas such as data structures
and methods of optimization; and

4. Finite algebraic structures that arise in conjunction with disciplines such as coding
theory, methods of enumeration, gating networks, and combinatorial designs.

A primary reason for studying the material in any or all of these four major topics is the
abundance of applications one finds in the study of computer science — especially in the
areas of data structures, the theory of computer languages, and the analysis of algorithms.
In addition, there are also applications in engineering and the physical and life sciences, as
well as in statistics and the social sciences. Consequently, the subject matter of discrete and
combinatorial mathematics provides valuable material for students in many majors — not
just for those majoring in mathematics or computer science.

The major purpose of this new edition is to continue to provide an introductory survey
in both discrete and combinatorial mathematics. The coverage is intended for the beginning
student, so there are a great number of examples with detailed explanations. (The examples
are numbered separately and a thick line is used to denote the end of each example.) In
addition, wherever proofs are given, they too are presented with sufficient detail (with the
novice in mind).
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The text strives to accomplish the following objectives:

1. To introduce the student at the sophomore-junior level, if not earlier, to the topics and
techniques of discrete methods and combinatorial reasoning. Problems in counting, or
enumeration, require a careful analysis of structure (for example, whether or not order
and repetition are relevant) and logical possibilities. There may even be a question of
existence for some situations. Following such a careful analysis, we often find that the
solution of a problem requires simple techniques for counting the possible outcomes that
evolve from the breakdown of the given problem into smaller subproblem:s.

2. To introduce a wide variety of applications. In this regard, whenever data structures
(from computer science) or structures from abstract algebra are required, only the basic
theory needed for the application is developed. Furthermore, the solutions of some ap-
plications lend themselves to iterative procedures that lead to specific algorithms. The
algorithmic approach to the solution of problems is fundamental in discrete mathemat-
ics, and this approach reinforces the close ties between this discipline and the area of
computer science.

3. To develop the mathematical maturity of the student through the study of an area that
is so different from the traditional coverage in calculus and differential equations. Here,
for example, there is the opportunity to establish results by counting a certain collection
of objects in more than one way. This provides what are called combinatorial identities;
it also introduces a novel proof technique. In this edition the nature of proof, along with
what constitutes a valid argument, is developed in Chapter 2, in conjunction with the
laws of logic and rules of inference. The coverage is extensive, keeping the student
(with minimal background) in mind. [For the reader with a logic course (or something
comparable) in his or her background, this material can be skipped over with little or
no difficulty.] Proofs by mathematical induction (along with recursive definitions) are
introduced in Chapter 4 and then used throughout the subsequent chapters.

With regard to theorems and their proofs, in many instances an attempt has been made
to motivate theorems from observations on specific examples. In addition, whenever a
finite situation provides a result that is not true for the infinite case, this situation is
singled out for attention. Proofs that are extremely long and/or rather special in nature
are omitted. However, for the very small number of proofs that are omitted, references are
supplied for the reader interested in seeing the validation of these results. (The amount
of emphasis placed on proofs will depend on the goals of the individual instructor and
on those of his or her student audience.)

4. To present an adequate survey of topics for the computer science student who will be
taking more advanced courses in areas such as data structures, the theory of computer
languages, and the analysis of algorithms. The coverage here on groups, rings, fields,
and Boolean algebras will also provide an applied introduction for mathematics majors
who wish to continue their study of abstract algebra.

The prerequisites for using this book are primarily a sound background in high school
mathematics and an interest in attacking and solving a variety of problems. No particular
programming ability is assumed. Program segments and procedures are given in pseudo-
code, and these are designed and explained in order to reinforce particular examples. With
regard to calculus, we shall mention later in this preface its extent in Chapters 9 and 10.

My primary motivation for writing the first four editions of this book has been the en-
couragement I had received over the years from my students and colleagues, as well as from
the students and instructors who used the first four editions of the textbook at many different
colleges and universities. Those four editions reflected both my interests and concerns and
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those of my students, as well as the recommendations of the Committee on the Undergrad-
uate Program in Mathematics and of the Association of Computing Machinery. This fifth
edition continues along the same lines, reflecting the suggestions and recommendations
made by the instructors and especially the students who have used or are using the fourth
edition.

Features

Following are brief descriptions of some of the major features of this newest edition. These
are designed to assist the reader (student or otherwise) in learning the fundamentals of
discrete and combinatorial mathematics.

Emphasis on algorithms and applications. Algorithms and applications in many areas
are presented throughout the text. For example:

1. Chapter 1 includes several instances where the introductory topics on enumeration
are needed — one example, in particular, addresses the issue of over-counting.

2. Section 7 of Chapter 5 provides an introduction to computational complexity. This
material is then used in Section 8 of this chapter in order to analyze the running times of
some elementary pseudocode procedures.

3. The material in Chapter 6 covers languages and finite state machines. This introduces
the reader to an important area in computer science — the theory of computer languages.

4. Chapters 7 and 12 include discussions on the applications and algorithms dealing with
topological sorting and the searching techniques known as the depth-first search and the
breadth-first search.

5. In Chapter 10 we find the topic of recurrence relations. The coverage here includes ap-
plications on (a) the bubble sort, (b) binary search, (c) the Fibonacci numbers,
(d) the Koch snowflake, (e) Hasse diagrams, (f) the data structure called the stack,
(g) binary trees, and (h) tilings.

6. Chapter 16 introduces the fundamental properties of the algebraic structure called
the group. The coverage here shows how this structure is used in the study of algebraic
coding theory and in counting problems that require Polya’s method of enumeration.

Detailed explanations. Whether it is an example or the proof of a theorem, explana-
tions are designed to be careful and thorough. The presentation is primarily focused on
improving understanding on the part of the reader who is seeing this type of material for
the first time.

Exercises. The role of the exercises in any mathematics text is a crucial one. The amount
of time spent on the exercises greatly influences the pace of the course. Depending on
the interest and mathematical background of the student audience, an instructor should
find that the class time spent on discussing exercises will vary.

There are over 1900 exercises in the 17 chapters. Those that appear at the end of each
section generally follow the order in which the section material is developed. These
exercises are designed to (a) review the basic concepts in the section; (b) tie together
ideas presented in earlier sections of the chapter; and (c) introduce additional concepts
that are related to the material in the section. Some exercises call for the development
of an algorithm, or the writing of a computer program, often to solve a certain instance
of a general problem. These usually require only a minimal amount of programming
experience.
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Each chapter concludes with a set of supplementary exercises. These provide further
review of the ideas presented in the chapter, and also use material developed in earlier
chapters.

Solutions are provided at the back of the text for almost all parts of all the odd-
numbered exercises.

Chapter summaries. The last numbered section in each chapter provides a summary
and historical review of the major ideas covered in that chapter. This is intended to give
the reader an overview of the contents of the chapter and provide information for further
study and applications. Such further study can be readily assisted by the list of references
that is supplied.

In particular, the summaries at the ends of Chapters 1, 5, and 9 include tables on the
enumeration formulas developed within each of these chapters. Sometimes these tables
include results from earlier chapters in order to make comparisons and to show how the
new results extend the prior ones.

Organization

The areas of discrete and combinatorial mathematics are somewhat new to the undergraduate
curriculum, so there are several options as to which topics should be covered in these courses.
Each instructor and each student may have different interests. Consequently, the coverage
here is fairly broad, as a survey course mandates. Yet there will always be further topics that
some readers may feel should be included. Furthermore, there will also be some differences
of opinion with regard to the order in which some topics are presented in this text.

The nature and importance of the algorithmic approach to problem solving is stressed
throughout the text. Ideas and approaches on problem solving are further strengthened by
the interrelations between enumeration and structure, two other major topics that provide
unifying threads for the material developed in the book.

The material is subdivided into four major areas. The first seven chapters form the
underlying core of the book and present the fundamentals of discrete mathematics. The
coverage here provides enough material for a one-quarter or one-semester course in discrete
mathematics. The material in Chapter 2 can be reviewed by those with a background in logic.
For those interested in developing and writing proofs, this material should be examined
very carefully. A second course — one that emphasizes combinatorics — should include
Chapters 8, 9, and 10 (and, time permitting, sections 1, 2, 3, 10, 11, and 12 of Chapter 16). In
Chapter 9 some results from calculus are used; namely, fundamentals on differentiation and
partial fraction decompositions. However, for those who wish to skip this chapter, sections
1,2, 3,6, and 7 of Chapter 10 can still be covered. A course that emphasizes the theory and
applications of finite graphs can be developed from Chapters 11, 12, and 13. These chapters
form the third major subdivision of the text. For a course in applied algebra, Chapters
14, 15, 16, and 17 (the fourth, and final, subdivision) deal with the algebraic structures —
group, ring, Boolean algebra, and field — and include applications on cryptology, switching
functions, algebraic coding theory, and combinatorial designs. Finally, a course on the role
of discrete structures in computer science can be developed from the material in Chapters
11, 12, 13, 15, and sections 1-9 of Chapter 16. For here we find applications on switching
functions, the RSA cryptosystem, and algebraic coding theory, as well as an introduction
to graph theory and trees, and their role in optimization.

Other possible courses can be developed by considering the following chapter depen-
dencies.
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Dependence on Prior Chapters

No dependence
No dependence (Hence an instructor can start a course in discrete mathe-
matics with either the study of logic or an introduction to enumeration.)

’

’

2
2
52,
2
2

]

1
1,2,3
1,2,3,4

1,2, 3, 5 (Minor dependence in Section 6.1 on Sections 4.1, 4.2)
1,2, 3,5, 6 (Minor dependence in Section 7.2 on Sections 4.1, 4.2)
1

1

1

1

’

(Minor dependence in Example 8.6 on Section 5.3)

,3,4,5,9 (Minor dependence in Example 10.33 on Section 7.3)
,2,3,4,5 (Although some graph-theoretic ideas are mentioned in Chapters
5,6,7,8,and 10, the material in this chapter is developed with no dependence
on the graph-theoretic material given in these earlier results.)
1,2,3,4,5,11

3,5,11,12

2,3,4,5,7 (The Euler phi function (¢) is used in Section 14.3. This function
is derived in Example 8.8 of Section 8.1 but the result can be used here in
Chapter 14 without covering Chapter 8.)

2,3,5,7

1,2,3.4,95,7

2,3,4,5,7, 14

3
i3
3
2

In addition, the index has been very carefully developed in order to make the text even
more flexible. Terms are presented with primary listings and several secondary listings.
Also there is a great deal of cross referencing. This is designed to help the instructor who
may want to change the order of presentation and deviate from the straight and narrow.

Changes in the Fifth Edition

The changes here in the fifth edition of Discrete and Combinatorial Mathematics reflect
the observations and recommendations of students and instructors who have used earlier
editions of the text. As with the first four editions, the tone and purpose of the text remain
intact. The author’s goal is still the same: to provide within these pages a sound, readable,
and understandable introduction to the foundations of discrete and combinatorial mathe-
matics — for the beginning student or reader. Among the changes one will find in this fifth
edition we mention the following:

® The examples in Section 4 of Chapter 1 now include material on runs, a concept that
arises in the study of statistics —in particular, in the area of quality control.

e Exercise 13 for Section 3 of Chapter 2 develops the rule of inference known as reso-
lution, a rule that serves as the basis for many computer programs designed to automate
a reasoning system.

® The earlier editions of this text included a section that introduced the notion of prob-
ability. This section has now been expanded and three additional optional sections have
been added for those who wish to further examine some of the introductory ideas as-
sociated with discrete probability — in particular, the axioms of probability, conditional
probability, independence, Bayes’ Theorem, and discrete random variables.
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® The coverage on partial orders and total orders in Section 3 of Chapter 7 now includes
an optional example where the Catalan numbers arise in this context.

® The introductory material in Section 1 of Chapter 8 has been rewritten to provide
a more readable transition between the coverage on counting and Venn diagrams in Sec-
tion 3 of Chapter 3 and the more general technique known as the Principle of Inclusion
and Exclusion.

® One of the fascinating features of discrete and combinatorial mathematics is the vari-
ety of ways a given problem can be solved. In the fourth edition (in Chapters 1 and 3)
the reader learned, in two different contexts, that a positive integer n had 2"~! compo-
sitions — that is, there are 2"~' ways to write n as an ordered sum of positive-integer
summands. This result is now established in three other ways: (i) by the Principle of
Mathematical Induction in Chapter 4; (ii) using generating functions in Chapter 9; and
(iii) by solving a recurrence relation in Chapter 10.

e For those who want even more on discrete probability, Section 2 of Chapter 9 includes
an example that deals with the geometric random variable.

® Section 2 of Chapter 10 now includes a discussion of the work by Gabriel Lamé in
estimating the number of divisions used in the Euclidean algorithm to find the greatest
common divisor of two positive integers.

® The Master theorem (of importance in the analysis of algorithms) is introduced and
developed in an exercise for Section 6 of Chapter 10.

® The material on transport networks (in Section 3 of Chapter 13) has been updated and
now incorporates the Edmonds-Karp algorithm in the procedure originally developed by
Lester Ford and Delbert Fulkerson.

® The coverage on modular arithmetic in Section 3 of Chapter 14 now includes applica-
tions dealing with the linear congruential pseudorandom number generator, private-key
cryptosystems, and modular exponentiation. Further, in Section 4 of Chapter 14, the ma-
terial dealing with the Chinese Remainder Theorem, which was only stated in previous
editions, now includes a proof of this result as well as an example dealing with how it is
applied.

e Section 4 of Chapter 16 is new and optional. The material here provides an introduction
to the RSA public-key cryptosystem and shows how one can apply some of the theoretical
results developed in prior sections of the text.

e As with the second, third, and fourth editions, a great deal of effort has been applied
in updating the summary and historical review at the end of each chapter. Consequently,
new references and/or new editions are provided where appropriate.

e For this fifth edition, the following pictures and photographs have been added to the
summary and historical review of certain chapters: a picture of Thomas Bayes and a pho-
tograph of Andrei Nikolayevich Kolmogorov in Chapter 3; a picture of Al-Khowarizmi
in Chapter 4; a photograph of David A. Huffman in Chapter 12; and a photograph of
Joseph B. Kruskal in Chapter 13.

Ancillaries

® There is an Instructor’s Solutions Manual that is available, from the publisher, for
those instructors who adopt the textbook for their classes. It contains the solutions and/or
answers for all of the exercises within the 17 chapters and the three appendices of this
textbook.
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® There is also a Student’s Solutions Manual that is available separately. It contains the
solutions and/or answers for all of the odd-numbered exercises in the textbook. In some
cases more than one solution is presented.

® The following Web site provides additional resources for learning more about discrete
and combinatorial mathematics. In addition it also provides a way for readers to contact
the author with comments, suggestions, or possible errors they have found.

www.aw.com/grimaldi
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