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Preface

The doctoral course “Rational Function Systems and Electrical Networks
with Multi-parameters” has been delivered by the author, for many years
based on his extensive research. With a lack of corresponding books in this
field, there is a challenge for higher education to have a framework and text to
work from. It is quite necessary to transform the course lecture notes and the
knowledge acquired over a long career focused in this area into a systematic,
comprehensive book to assist in teaching and research.

Due to the inconvenience in exploring structural properties using linear
system theory and electrical network theory over the real field R, the author
uses the matrices over the field F(z) of rational functions in multi-parameters
to describe coefficient matrices of systems and electrical networks and inves-
tigates their structural properties based on the description of systems and
electrical networks over F(z). The book Rational Function Systems and Elec-
trical Networks with Multi-parameters is divided into five chapters. Chapter
1 introduces the background and meaning of systems and electrical networks
over F(z). In chapter 2, Matrix theory is extended to the field F(z); the
reducibility condition of a class of matrix and its polynomial over F(z) is
discussed in detail; the definition of type-1 matrix and two basic properties
is given; the fact that type-1 matrix is of the two properties is proved and
the variable replacement condition for independent parameters is introduced.
Chapter 3 explores the structural controllability and observability of linear
systems over F'(z); and introduces some new conclusions in time domain and
frequency domain. Chapter 4 shows the structural properties of electrical
networks over F'(z): the separability, reducibility, controllability, and observ-
ability of RLC networks over F'(z) and structural conditions of controllabil-
ity and observability over F(z); the separability, reducibility, controllability,
and observability of RLCM networks over F(z); the state equation existence
condition of active networks over F'(z) and controllability and observability
conditions over F(z). Chapter 5 describes further thoughts on the field.

Since the object of research in this book is Rational Function Systems and
Electrical Networks with Multi-parameters, the results obtained are usually
clear and intuitive, and are convenient to analyze and design systems and
electric networks. For instance, there is such a conclusion that for an RLC
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network over F'(z) (this means in this kind of RLC networks all the resis-
tors, capacitors, and inductances are regarded as independent parameters)
without sources, if it has no all-capacitor cut-sets or all-inductor loops and
it is inseparable (these are all structural conditions), then the characteris-
tic polynomial of this network is irreducible over F'(z) (it does not need to
calculate the characteristic polynomial, and we just need to observe the net-
work structure). The reducibility of the characteristic polynomial has a direct
relationship with controllability, observability, and stability. So it is easy to
analyze and design an RLC network whose characteristic polynomial is irre-
ducible according to this conclusion. The description of systems and electrical
networks over F'(z) is a useful tool to investigate the structural properties of
systems and electrical networks. Furthermore, the real field R is the subfield
of F(z), so the conclusions over F'(z) are more general than those over R.

This book summarizes the author’s research achievements over the past
20 years with four projects for National Nature Science Foundation of China
(subjects include: Research on Electrical Network Theory over F(z) and
Computer Assistant Analysis, 1995—-1997; Researching Electrical Network
Structural Properties Using Matriz over F(z), 2002—2004; Research on Struc-
tural Controllability and Observability of Systems over F(z), 2006 —2008; Re-
search on Separability, Reducibility, Controllability, Observability and Stabil-
ity of Active Networks over F'(z), 2010-2012) and two projects for the Nature
Science Foundation of Hubei Province of China, which is at the leading edge
of scientific research.

The description of systems, electrical networks, and matrices over F(z)
in this book is different from other relevant books, which introduce linear
systems, electrical networks and matrices over R. In this book we explore sys-
tems, electrical networks, and matrices over F(z). This book involves three
subject areas: systems, networks and matrices over F'(z), which is an achieve-
ment of interdisciplinary research. So there is a close connection among the
three subjects in this book. For example, the reducibility condition of a class
of rational function matrix introduced in Chapter 2 is the important base of
Chapter 3 and Chapter 4. Usually systems, electrical networks, and matrices
are introduced by three distinct subject area books, which are independent
to each other.

This book can be used by postgraduate students, Ph.D students, college
teachers, researchers and engineers in the field of electronic and electrical
engineering, automatic control, and applied mathematics matrix theory .

If any deficiency or mistake should appear in the book due to my over-
sight, I welcome your comments and feedback to improve future editions and
expanding the journey of scientific research.

Kai-Sheng Lu
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1 Introduction

A matrix A = (aij )nxm is called the matrix over the real field or real number
matrix, if each entry a;; of this matrix is a real number. A system X =
AX + BU, Y = CX + DU is called a linear system (including an electrical
network, or a network for short) over the real field or a real number system,
if its coefficient matrices A, B, C, and D are real number matrices.

We know that linear systems and networks over the real field are explored
very well and are successfully used for analysis and design of systems and net-
works[Chen, 1984 ; Zheng, 2002 ; Chen et al., 1992 ; Chen, 1976; Balabanian,
et al., 1969; Chen, 1987]. However, people find that real number matrices
are not convenient to analyze structural properties of physical systems (e.g.,
structural controllability and structural observability). Take the liquid level
control system shown in Fig. 1.1 as an example.

0 —=R)-E =L sk

Fig.1.1 Liquid level control system

. A il S 1 Ah(s K
In Fig. 1.1, G1(s) = E(,'Z(.E‘)) = K, <1+ E)’ Ga(s) = Aq-((s)) = T
Ah(s) = bis+bo

The closed loop transfer function of this system is = .
P Y Ah, (S) 52 +a18+ ag

The block diagram representation of the system can be denoted by

Ah(s) ——’l 1/(s*+a;s+ap) @ Ah(s)

KK, 4 _KK,+1 b KK, b KK,
:T:,T ) 1= T y Vg = T1T y V1 — T .
Then the state equation of the feedback system can be denoted by

where ap =

X = AX + BAh;, Ah=CX,

where X = (w,w)T, w is the output signal of the left block, w is a derivative
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of w, and (w,&)T denotes the transpoge of (w,w),

0 1 s (0 o_ (KK KK
A=| kx, 1+kK,|" B=\ ) “=\7, 7T )

TT; T
(1.1)

For this system with given structure, only when all physical parameters
K,,T;, K, and T take values, A, B, and C are real number matrices and the
system is real number system. So analysis results of this real number system
(such as the controllability of (A, B), observability of (A,CT), reducibility
of characteristic polynomial det (Al — A), and so on) are determined by two
factors: physical system structure and parameter values. But what is the
individual effect of system structure is not distinguishable.

To explore the effect of system structures, various parametrizations were

appeared:

Paper [Lin, 1974] proposed a structured matrix (SM), whose entry is
either constant zero or independent nonzero, that is, the nonzero entries are
independent parameters. For example,

29 23

where the three nonzero entries z;, z2, and 23 are independent parameters.
Papers [Shields et al., 1976; Glover et al., 1976; Davison, 1977; Hosoe et
al., 1979; Mayeda, 1981; Li et al., 1996] used SM investigating structural
controllability of MIMO systems.

Papers [Corpmat et al., 1976; Anderson et al., 1982; Willems, 1986] in-
troduced one-degree polynomial matrix, whose entries are one-degree poly-
nomials in independent parameters. Such as

11 11 1
A= +z + 2 0 _ 2Z1+204+1 z1+1
00 10 01 21 22

is a one-degree polynomial matrix in the independent parameters z; and 2.

A matrix is called a column-structured matrix (CSM) if the different
entries in a column of the matrix contain the same parameter factor but the
factors in different columns are independent of each other [Yamada et al.,

1985]. For example,
A= 321 V) ,
221 422

where z; and 2; are parameter factors in the first column and second column,
respectively, and they are independent.
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A matrix of the form M = Q + T is said to be a mixed matrix if the
nonzero entries of T are algebraically independent over the field K to which
the entries of Q belong [Murota, 1987, 1989a, 1989b, 1993, 1998]. Take the

following matrix as example,

A=Q+T=(O ﬁ)+<zl O),
3 0 0 2o

where @ is a matrix over the real field and the nonzero entries z; and 23 in
T are algebraic independent over the real field, that is, the real field does not
contain the two members. A is called a mixed matrix, where K is the real
field.

Clearly, the inverse matrix of the full rank square SM, CSM, one-degree
polynomial matrix, or mixed matrix is generally not SM, CSM, one-degree
polynomial matrix, or mixed matrix. To overcome this problem, papers [Lu
et al., 1991, 1994] introduced rational function matrix in multi-parameters
(RFM) to describe the coefficient matrices of systems and networks and based
the description of systems and networks on RFM to research their structural
properties.

Let 21,...,24 denote ¢q independent parameters (can also be variables or
indeterminates), not constants or numerical values. Let z = (21,...,2,) € RY,
R? is the domain of definition for z, and it can also be called parameter
space. Let F'(z) denote the field of all rational functions with real coefficients
in g parameters z1, . .., 24, and F(2)[A] denote the ring of all F(z)-coefficient
polynomials in A . Such as

\/5z1+222+3

421 + z3 € F(2),

where /5, 2, 3, 4, and 1 are real coeficients; because polynomial ring in z is
a subset of F(z), V5 21 + 222 + 3 € F(z); because the real field is a sub-field
of F(z), any real number is a member of F(z). It is clear that

822 +1
32425 + 2026 + V2

(521 + z3)A? + V6 ze\ + € F(2)[A.
Definition 1.1 If any entry of matrix M is a member of F(2) (i.e., rational
function in zi,...,2,), then matrix M is called a rational function matrix
(RFM) in z or a matrix over F(z); if the coefficient matrices of a system
(including network) are considered to be RFMs, the system is called the
rational function system in multi-parameters, simply called rational function
system (RFS), or system over F(z).

Obviously, the inverse matrix of a full rank square RFM is also an RFM.
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Papers [Lin, 1974; Shields et al., 1976; Glover et al., 1976; Davison, 1977;
Hosoe et al., 1979; Mayeda, 1981; Li et al., 1996; Corpmat et al., 1976;
Anderson et al., 1982; Willems, 1986; Yamada et al., 1985; Murota, 1987,
1989a, 1989b, 1993, 1998] are of mathematical significance. However usually
these matrices defined in the papers can not describe the physical systems
completely, so they are not directly used to explore the structural properties
of physical systems. Take Fig. 1.1 as illustration. The independent param-
eters of this system should be the 4 physical parameters Kp,T;, K, and T.
From Eq. (1.1) and the above definitions we know that matrix over the real
field, SM, one-degree polynomial matrix in independent parameters, CSM
and mixed matrix can not describe the matrices A, B, and C completely, but
all these three matrices are RFMs and the system (A4, B,C) is RFS, where
z = (Kp,T;, K, T). Why RFM can describe the structure of physical systems
is that the conception of RFM is more general, and matrix over the real field,
SM, one-degree polynomial matrix, CSM and mixed matrix can be treated
as special RFMs. So the research work of RFS has both mathematical and
physical significance.

It should be emphasized that the conclusions over F(z) is determined
by structures of systems and networks only, not the values of z, because
parameters are not evaluated with regard to conclusions over F(z), which
eliminates the value effect and only leaves the structure effect. Let us see the
following conclusions over F(z):

1) If an RLC network over F(z) without sources has no all-capacitor cut-
set, or all-inductor loop and is unhinged® (this is structural condition), then
the characteristic polynomial det (A\] — A) of the network is an irreducible
polynomial over F(z)[\] (without calculating characteristic polynomial, and
only observing the structure of this network) [Lu et al., 1998].

2) If an unhinged RLC network with sources over F(z) has no all-voltage
source and capacitor loop, or all-current source and inductor cut-set, and if
its network without sources (let voltage sources be short circuited and current
sources be open circuited) is unhinged and has no all-capacitor cut-set, or
all-inductor loop, then this network with sources is controllable over F(z)
[Lu, 2003].

3) If an RLC network without sources over F'(z) is unhinged and neither
all-capacitor network nor all-inductor network, then the network is observable
over F(z) when any network variables (node voltages and/or branch currents)
are outputs [Lu et al., 2005b]; where all resistors, capacitors and inductors
of the network are treated as independent parameters z.

® An RLC network is said to be separable (or hinged) if the network has at least one
sub-network which has at most one node in common with its complement sub-network,
otherwise it is an unhinged network.
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For example, consider the network, as shown in Fig. 1.2, where z =
(C,L, Ry, ..., Ry). Clearly, its network without sources (let the voltage source
be short circuited) is unhinged and has no all-capacitor cut-set, or all-inductor
loop. So from conclusion 1) we know that the characteristic polynomial
det (A — A) of this network is an irreducible polynomial in ring F(z)[A].
From Fig. 1.2, we know that there is a source in this unhinged network and
no all-voltage source and capacitor loop, or all-current source and inductor
cut-set; its network without sources is unhinged and has no all-capacitor
cut-set, or all-inductor loop. So from conclusion 2), this network is control-
lable over F(z). If take the node voltage ug; of resistor R; as output in its
network without sources, then for the network without sources is unhinged
and is not all-capacitor or all-inductor network, the network is observable
over F(z) from conclusion 3). Application of these conclusions only needs to
observe network structure. So conclusions over F(z) are only determined by
structure, and the properties of systems over F'(z) or simply called properties
over F(z) (such as controllability and observability over F'(z)) are equivalent
to structural properties (such as structural controllability and observability).
The description of systems over F(z) is a useful tool to explore structural
properties.

Fig.1.2 An RLC network

We make some primary investigation to structural properties of RFSs us-
ing this tool: Research on the reducibility for a class of square RFM and its
characteristic polynomial; controllability and observability over F(z); sepa-
rability, reducibility, controllability, and observability of networks over F(z).
Some obtained conclusions will be introduced in Chapters 2-5.

Now we will show the differences to the existing well known theories. Lin-
ear system theory can be divided into four parallel embranchments: state-
space method, frequency domain method, geometric theory, and algebra the-
ory according to mathematic tool and system description [Zheng, 2002].

The basic description of state-space (time domain) method is

= Azx+ Bu, y=Cz+ Du,

where x € R*,u € R™,y € RP, A, B, C,and D are n xn,n X m,p X n
and p x m real number matrices respectively. This is a linear time-invariable
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system, which is a real number system above (the term “real number system”
in this book is to distinguish to RFS). In this book, A, B, C, and D are
considered to be matrices over F(z), and systems are treated to be RFSs,
and structural properties depending on system structures not on parameter
values are researched.

Frequency domain method is based on the state-space method. The trans-
fer function matrix C(sI — A)~!B + D of the real number system is a matrix
over the field F'(s) of rational functions in only one complex variable s, where
F(s) denotes the field of all rational functions with real coeflicients in s, that
is, the coefficients of s are real numbers. However although the entry of the
transfer function matrix C(sI — A)"!B + D of RFS is rational function in s,
the coefficients of s are members over F(z), which are rational functions in
21,...,2¢ and not just real numbers—real numbers are a special situation.
Or we can say that this transfer function matrix is a matrix over F(z; s),
where F(z; s) denotes the field of all rational functions with real coefficients
in g + 1 independent parameters or indeterminates 2;,..., 24, s.

The algebra theory of linear systems (see Chapter 10 of [Kalman et al.,
1969]) explores the linear systems over arbitrary and certain field K of num-
bers —generally it is the real field R, where the state vector z € K™, input
vector u € K™, output vector y € KP, and the coefficient matrices F', G, and
H (now customarily denoted by A, B, and C) are n x n,n x m and p X n
matrices respectively over K. Since K is the field of numbers, the description
of linear systems over K is not easy to express and explore the structural
properties of physical systems.

The geometric method of linear system [Wonham, 1979] explores linear
space over the real field and the field of complex numbers, other than F(z),
so it is not easy to describe the structure of physical systems yet.

In this book, we utilize the generally used and effective method of the
state-space and frequency domain, and try to extend the theory of linear
time-invariable systems (real number systems) to RFSs. The significance of
this is as follows:

First, description over F'(z) is a useful tool to explore the structural prop-
erties of systems and networks. Research of systems and networks over F(z)
is a work of mathematic and physical significance.

Furthermore, researching and analyzing properties of systems and net-
works over F(z) (structural properties) has more practicable meaning than
that over the real field. For instance, the controllability and observability of
system are as shown in Fig. 1.1. When K, = 2,T; = 1,K = 3,T =1, or
denoted by z = (K,,T;, K,T) = Z = (2,1, 3,1), substituting into Eq. (1.1)
yields



