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Preface

Since it was introduced by Zadeh in 1965, the fuzzy set theory has been widely applied
in various fields of modern society. Central to the fuzzy set is the extension of the
characteristic function taking the value of 0 or 1 to the membership function which
can take any value from the closed interval [0,1]. However, the membership function
is only a single-valued function, which cannot be used to express the evidences of sup-
port and objection simultaneously in many practical situations. In the processes of
cognition of things, people may not possess a sufficient level of knowledge of the prob-
lem domain, due to the increasing complexity of the socio-economic environments. In
such cases, they usually have some uncertainty in providing their preferences over the
objects considered, which makes the results of cognitive performance exhibit the char-
acteristics of affirmation, negation, and hesitation. For example, in a voting event, in
addition to support and objection, there is usually abstention which indicates hesita-
tion and indeterminacy of the voter to the object. As the fuzzy set cannot be used to
completely express all the information in such a problem, it faces a variety of limits
in actual applications.

Atanassov (1983) extends the fuzzy set characterized by a membership function to
the intuitionistic fuzzy set (IFS), which is characterized by a membership function, a
non-membership function and a hesitancy function. As a result, the IFS can describe
the fuzzy characters of things more detailedly and comprehensively, which is found
to be more effective in dealing with vagueness and uncertainty. Over the last few
decades, the IFS theory has been receiving more and more attention from researchers
and practitioners, and has been applied to various fields, including decision making,
logic programming, medical diagnosis, pattern recognition, robotic systems, fuzzy
topology, machine learning and market prediction, etc.

The IFS theory is undergoing continuous in-depth study as well as continuous
expansion of the scope of its applications. As such, it has been found that effective
aggregation and processing of intuitionistic fuzzy information becomes increasingly
important. Information processing tools, including aggregation techniques for intu-
itionistic fuzzy information, association measures, distance measures and similarity
measures for IFSs, have broad prospects for actual applications, but pose many in-
teresting yet challenging topics for research.

In this book, we will give a thorough and systematic introduction to the latest
research results in intuitionistic fuzzy information aggregation theory and its ap-
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plications to various fields such as decision making, medical diagnosis and pattern
recognition, etc. The book is organized as follows:

Chapter 1 introduces the aggregation techniques for intuitionistic fuzzy informa-
tion. We first define the concept of intuitionistic fuzzy number (IFN), and based
on score function and accuracy function, give a ranking method for IFNs. We then
define the operational laws of IFNs, and introduce a series of operators for aggregat-
ing intuitionistic fuzzy information. These include the intuitionistic fuzzy averaging
operator, intuitionistic fuzzy bonferroni means, and intuitionistic fuzzy aggregation
operators based on Choquet integral, to name just a few. The desirable properties
of these operators are described in detail, and their applications to multi-attribute
decision making are also discussed.

Chapter 2 mainly introduces the aggregation techniques for interval-valued intu-
itionistic fuzzy information. We first define the concept of interval-valued intuitionis-
tic fuzzy number (IVIFN), and introduce some basic operational laws of IVIFNs. We
then define the concepts of score function and accuracy function of IVIFNs, based on
which a simple method for ranking IVIFNs is presented. We also introduce a number
of operators for aggregating interval-valued intuitionistic fuzzy information, including
the interval-valued intuitionistic fuzzy averaging operator, the interval-valued intu-
itionistic fuzzy geometric operator, the interval-valued intuitionistic fuzzy aggregation
operators based on Choquet integral, and many others. The interval-valued intuition-
istic fuzzy aggregation operators are applied to the field of decision making, and some
approaches to multi-attribute decision making based on interval-valued intuitionistic
fuzzy information are developed.

Chapter 3 introduces three types of measures: association measures, distance
measures, and similarity measures for IFSs and interval-valued intuitionistic fuzzy
sets (IVIFSs).

Chapter 4 introduces decision making approaches based on intuitionistic prefer-
ence relation. We first define preference relations, then introduce the concepts of
interval-valued intuitionistic fuzzy positive and negative ideal points. We also utilize
aggregation tools to establish models for multi-attribute decision making. Approaches
to multi-attribute decision making in interval-valued intuitionistic fuzzy environments
are also developed. Finally, consistency analysis on group decision making with intu-
itionistic preference relations is given.

Chapter 5 introduces multi-attribute decision making with IFN/IVIFN attribute
values and known or unknown attribute weights. We introduce the concepts such as
relative intuitionistic fuzzy ideal solution, relative uncertain intuitionistic fuzzy ideal
solution, modules of IFNs and IVIFNs, etc. We then establish projection models to
measure the similarity degree between each alternative and the relative intuitionistic
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fuzzy ideal solution and the similarity degree between each alternative and the relative
uncertain intuitionistic fuzzy ideal solution, by which the best alternative can be
obtained.

Chapter 6 introduces aggregation techniques for dynamic intuitionistic fuzzy infor-
mation and methods for weighting time series. We introduce the concepts of intuition-
istic fuzzy variable and uncertain intuitionistic fuzzy variable. We describe dynamic
intuitionistic averaging operators, based on which dynamic intuitionistic fuzzy multi-
attribute decision making and uncertain dynamic intuitionistic fuzzy multi-attribute
decision making problems are tackled.

Chapter 7 considers multi-attribute group decision making problems in which the
attribute values provided by experts are expressed in IFNs, and the weight informa-
tion about both the experts and the attributes is to be determined. We introduce
two nonlinear optimization models, from which exact formulas can be obtained to
derive the weights of experts. To facilitate group consensus, we introduce a nonlin-
ear optimization model based on individual intuitionistic fuzzy decision matrices. A
simple procedure is used to rank the alternatives. The results are also extended to
interval-valued intuitionistic fuzzy situations.

This book is suitable for practitioners and researchers working in the fields of fuzzy
mathematics, operations research, information science and management science and
engineering, etc. It can also be used as a textbook for postgraduate and senior-year
undergraduate students.

This work was supported by the National Science Fund for Distinguished Young
Scholars of China under Grant 70625005.

Zeshui Xu, Xiaoqgiang Cai
Hong Kong
September, 2011
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Chapter 1

Intuitionistic Fuzzy Information
Aggregation

The fuzzy set theory has been extensively applied in various fields of modern society
(Chen et al., 2005) since its introduction by Zadeh (1965) in 1960s. Central to the
fuzzy set is the extension from the characteristic function taking the value of 0 or 1
to the membership function which can take any value from the closed interval [0,1].
However, the membership function is only a single-valued function, which cannot be
used to express the support and objection evidences simultaneously in many practical
situations.

In cognition of things, people may not possess a precise or sufficient level of knowl-
edge of the problem domain, due to the complexity of the socio-economic environment.
In such cases, they usually have some uncertainty in providing their preferences over
the objects considered, which makes the results of cognitive performance exhibit the
characteristics of affirmation, negation and hesitation. For example, in a voting prob-
lem, in addition to “support” and “objection”, there is usually “abstention” which
indicates the hesitation and indeterminacy of the voter regarding the object. Because
a fuzzy set cannot be used to completely express all the information in such problems,
its applicability is often limited in many practical situations.

Atanassov (1986; 1983) generalizes Zadeh’s fuzzy set theory with the concept of
intuitionistic fuzzy set (IFS), which is characterized by a membership function, a non-
member function, and a hesitancy (indeterminancy) function. It is argued that IFS
can describe the fuzzy characters of things more detailedly and comprehensively, and
is therefore more useful in dealing with vagueness and uncertainty than the classical
fuzzy set theory. Over the last few decades, researchers have paid great attention
to investigation of the IFS theory, and achieved fruitful results (Atanassov, 1999;
Bustince et al., 2007). Atanassov (1986) and De et al. (2000) introduce several basic
operations on IFSs, including “intersection”, “union”, “supplement”, and “power”.
However, as the study of the IFS theory expands in both depth and scope, effective
aggregation and handling of intuitionistic fuzzy information has become necessary and
increasingly important. These basic operations on IFSs have been far from meeting
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the actual needs.

In recent years, Xu (2010c; 2007e), Xu and Xia (2011), Xu and Yager (2011;
2006), and Zhao et al. (2010) have focused on the subject of aggregation techniques
for intuitionistic fuzzy information. They have defined the concept of intuitionistic
fuzzy number and introduced, based on the score function and the accuracy function,
a ranking method for intuitionistic fuzzy numbers. They have further defined oper-
ational laws of intuitionistic fuzzy numbers, and introduced a series of operators for
aggregating intuitionistic fuzzy information, including the intuitionistic fuzzy aver-
aging operator, intuitionistic fuzzy weighted averaging operator, intuitionistic fuzzy
ordered weighted averaging operator, intuitionistic fuzzy hybrid averaging operator,
intuitionistic fuzzy geometric operator, intuitionistic fuzzy weighted geometric op-
erator, intuitionistic fuzzy ordered weighted geometric operator, intuitionistic fuzzy
hybrid geometric operator, intuitionistic fuzzy bonferroni means, generalized intu-
itionistic fuzzy aggregation operators, intuitionistic fuzzy aggregation operators based
on Choquet integral, induced generalized intuitionistic fuzzy aggregation operators,
etc. They have also applied these operators to the field of multi-attribute decision
making.

1.1 Intuitionistic Fuzzy Sets

We first introduce the concept of Zadeh'’s fuzzy set:
Definition 1.1.1 (Zadeh, 1965) Let X be a fixed set. Then

F={(z, ur(z))|z€ X } (1.1)

is called a fuzzy set, where pr is the membership function of F, up : X — [0, 1], and
ur(z) indicates the membership degree of the element x to F, which is a single value
belonging to the unit closed interval [0, 1].

Atanassov (1986; 1983) generalizes Zadeh’s fuzzy set with the concept of intuition-
istic fuzzy set (IFS) as defined below:
Definition 1.1.2 (Atanassov, 1986; 1983) An IFS is an object having the following
form:

A = {(z,pa(z),va(z)) |7 € X} (1.2)

which is characterized by a membership function:
pa:X —100,1, ze€eX - pa(z)€l0,1] (1.3)
and a non-membership function:

va: X - [0,1], z€X — va(z)€[0,1] (1.4)
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with the condition:
0< palz) +rvalz) €1, for all € X (1.5)

where ua(z) and v4(x) represent, respectively, the membership degree and the non-

membership degree of z in A.
Moreover, for each IFS A in X, if

ma(x)=1—pa(z)~va(z), for all z€ X (1.8)

then 74(z) is called an indeterminancy degree of z to A.
Szmidt and Kacprzyk (2000) call m4(x) an intuitionistic index of z in A. It is a
hesitancy degree of £ to A. Obviously,

O0<ma(z) <1, for all € X (1.7)

In particular, if
wa{z) =1—pa(z) — [l —pua(z)) =0, ze€X (1.8)

then A reduces to Zadeh’s fuzzy set. Thus, fuzzy sets are the special cases of IFSs.
For convenience, Xu (2007e) calls o = (uq, Vo) an intuitionistic fuzzy number
(IFN) or an intuitionistic fuzzy value (IFV), where

o €[0,1], va €[0,1], po+rve<1 (1.9)

and let 6 be the set of all [FNs. Clearly, a* = (1, 0) is the largest IFN, and
a” = (0, 1) is the smallest IFN.

Each IFN a = (ua,va) has a physical interpretation. For example, if a =
(0.5, 0.3), then we can see that u, = 0.5 and v, = 0.3. It can be interpreted as
“the vote for resolution is 5 in favor, 3 against, and 2 abstentions”.

For any IFN & = ([, va), the score of a can be evaluated by the score function
§ (Chen and Tan, 1994) as shown below:

s(a) = po = vy (1.10)

where s(a) € [-1, 1].

From Eq.(1.10), we can see that the score s(a) of the IFN « is directly related
to the difference between the membership degree 1, and the non-membership degree
Vo The greater the difference uy — v, the larger the score s(), and then the larger
the IFN «. In particular, if s(a) = 1, then the IFN o takes the largest value (1, 0);
If s(a) = —1, then « takes the smallest value (0, 1).
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Example 1.1.1 Let a; = (0.7,0.2) and a3 = (0.5,0.3) be two IFNs. Then by Eq.
(1.10), we can get the scores of «; and as respectively:

$(a1) =07-02=0.5, s(a2)=05-03=0.2

Since s(a) > s{az), we have a; > as.

Gau and Buehrer (1993) define the concept of vague set. Bustince and Burillo
(1996) point out that vague sets are IFSs. Chen and Tan (1994) utilize the max
and min operations and the score function to develop an approach to multi-attribute
decision making based on vague sets. However, in some special cases, this approach
cannot be used to distinguish two IFNs.

Example 1.1.2  Let a; = (0.6, 0.2) and a2 = (0.7, 0.3) be two IFNs. Then by Eq.
(1.10), we have

s(a1) =06 —0.2 =04, s(az)=0.7—0.3=04

Since s(a1) = s(az), we cannot tell the difference between o) and @y by using the
score function.
Hong and Choi (2000) define an accuracy function:

h(a) = po + va (L1.11)

where o = (tiq, v,) is an IFN, A is the accuracy function of «, and h{c) is the accuracy
degree of . The larger h(c), the higher the accuracy degree of the IFN a.

From Eqs.(1.6) and (1.11), the relationship between the hesitancy degree and the
accuracy degree of the IFN « can be shown as follows:

Mo + ha) = 1 (1.12)

Hence, the smaller the hesitancy degree 7, the bigger the accuracy degree h(x).
By Eq.(1.11), we can calculate the accuracy degrees of the IFNs o1 and s in
Example 1.1.2:

A(c1) =0.6+02=108, h(ay)=07+03=1

Then h(az) > h(e), ie., the accuracy degree of the IFN ay is higher than that of
the IFN a;.

Hong and Choi (2000) show that the relation between the score function s and
the accuracy function h is similar to the relation between the mean and the variance
in statistics. It is well known that an efficient estimator is a measure of the variance
of an estimate’s sampling distribution in statistics, i.e., the smaller the variance, the
better the performance of the estimator. Based on this idea, it is meaningful and
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appropriate to stipulate that the higher the accuracy degree i(«), the better the IFN
a. Consequently, as is larger than a;.

Motivated by the above analysis, Xu and Yager (2006) develop a method for

comparison and ranking of two IFNs, which is based on the score function s and the
accuracy function h as defined below:
Definition 1.1.3 (Xu and Yager, 2006) Let a1 = (lia,,%0,) and az = (fay, Va,)
be two IFNs, s(a1) = pa; — Vo, and s(az) = pa, — Va, the scores of the IFNs a4 and
az respectively, and k(o) = o, + Vo, and h{az) = pa, + va, the accuracy degrees
of the IFNs a; and ag respectively. Then

o If s(a1) < s(a2), then the IFN o is smaller than the IFN ap, denoted by
o) < (g,

e If s(ay) = s(az), then

(1) If A(c1) = h(az), the IFNs o and a3 are equal, i.e., Hay = fay a0d Vo, = Vg,
denoted by a1 = ag;

(2) If A(a1) < h(oz), the IFN a; is smaller than the IFN as, denoted by a1 < an;

(3) If A(a1) > h(ag), the IFN a; is larger than as, denoted by a; > asy.

Hong and Choi (2000) further strengthen the decision making method of Chen
and Tan (1994). They utilize the score function, the accuracy function, and the
max and min operations to develop another technique for handling multi-attribute
decision making with intuitionistic fuzzy information. However, the main problem of
the aforementioned techniques using the minimum and maximum operations to carry
the combination process is the loss of information, and hence a lack of precision in
the final results. Therefore, “how to aggregate a collection of IFNs without any loss
of information” is an interesting research topic (Xu, 2007e).

Up to now, many operators have been proposed for aggregating information in
various decision making environments (Calvo et al., 2002; Xu 2007g; 2004e; Xu and
Da, 2003b; Yager and Kacprzyk, 1997). Four of the most common operators for ag-
gregating arguments are the weighted averaging operator (Harsanyi, 1955), weighted
geometric operator (Saaty, 1980), ordered weighted averaging operator (Yager, 1988)
and ordered weighted geometric operator (Chiclana et al., 2001b; Xu and Da, 2002a),
which are defined as follows respectively:

Definition 1.1.4 (Harsanyi, 1955) Let WA : (Re)” — Re, and a; (j=1,2,---,n)
be a collection of real numbers. If

n
WAu(as, a2, ,an) = Y wja; (1.13)
=1

then the function WA is called a weighted averaging (WA) operator, where Re is
the set of all real numbers, w = (wy,ws, - ,wn)T is the weight vector of a; (j =
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1,2, ,n), withw; €0, 1] j=1,2,-+,n) and » w; = 1.

Definition 1.1.5 (Saaty, 1980) Let WG : (Re)*™ — (Re)*. If

n

WGw(al,G‘Za"" 1an) = Ha‘;j (114)

J=1

then the function WG is called a weighted geometric (WG) operator, where (Re)™*
is the set of all positive real numbers, and w = (wy,ws, -+ ,wn)? is the exponen-

tial weighting vector of a; (j = 1,2,--- ,n), with w; € [0,1] (j = 1,2,-+-,n) and
ij =1.
=1

Both the WA and WG operators first weight all the given arguments a; (j =
1,2,---,n), and then aggregate these weighted arguments. The difference between
these two operators is that the WG operator is much more sensitive to the given
arguments. Especially in the case where there is an argument taking the value of
zero, the aggregated value of these arguments by using the WG operator must be
zero no matter what the other given arguments are.

Definition 1.1.6 (Yager, 1988) Let OWA : (Re)™ — Re. If

k1]
OWAw(al,ag,--- ,an) = ijbj (1.15)
j=1
where w = (wy,ws,- - ,w,)T is the weighting vector associated with the function

OWA, with w; € [0,1], j = 1,2,--+,n, ij = 1, and b; is the j-th largest of
j=1

a; (j =1,2,---,n), then the function OWA is called an ordered weighted averaging

(OWA) operator.

Definition 1.1.7 (Chiclana et al., 2001b; Xu and Da, 2002a) Let OWG : (Re)*" —

(Re)*. If

n
OWGy(ar, a2, ,an) = [] 67" (1.16)
=1
where w = (w1, ws, - ,wn)T is the exponential weighting vector associated with the

n
function OWG, with w; € [0, 1], 5 = 1,2,--- ,n, ij = 1, and b; is the j-th largest
j=1
ofa; (j =1,2,---,n), then the function OWG is called an ordered weighted geometric
(OWG) operator.
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The fundamental characteristic of the OWA and OWG operators is that they first
rearrange all the given arguments in descending order, and then weight the ordered
positions of the arguments. These two operators aggregate the ordered arguments
together with the weights of their ordered positions. Obviously, the argument a; is
not associated with the particular weight w;. Instead, the weight w; is associated with
the particular ordered position ¢ of the arguments. Thus, w; is also called a position
weight. The OWG operator is developed on the basis of the OWA operator and the
geometric mean.

The above four operators are generally suitable to aggregate the arguments taking
the values of real numbers. They have been extended to accommodate uncertain
or fuzzy linguistic environments, see (Bordogna et al., 1997; Delgado et al., 1993;
Herrera et al., 2005; 1996b; Herrera and Martinez, 2000a; 2000b; Xu, 2008a; 2007g;
2006a; 2006b; 2006c; 2006g; 2004a; 2004d; Xu and Da, 2002b; Yager, 2004c; 2003a;
2003b; 1996; 1995; Zhang and Xu, 2005). Xu (2010c; 2007e), Xu and Xia (2011),
Xu and Yager (2011; 2006), and Zhao et al. (2010) have further generalized them
to accommodate intuitionistic fuzzy environments and investigated the aggregation
techniques for intuitionistic fuzzy information.

1.2 Operational Laws of Intuitionistic Fuzzy Numbers

Theorem 1.2.1 (Xu, 2007e) Let oy = (pa,, Vo,) and as = (fa,, Va,) be two
IFNs. Then
Q) €02 < gy < fla, and Vg, 2 Vg, (1.17)

Proof Since s(a1) = pa; — Vays 8(@2) = flay — Vags tas S fay a0d Vg, = Vg, We

have
S(Otl) - 8(02) = (ﬂm - VOll) - (/J‘Otz - Vaz)
= (Bay — Baz) + (Va, — Va,)
If oy = pa, and va, = Va,, then a1 = ag; Otherwise s{a;) — s(ag) < 0, ie.,

s(a1) < s(az). Hence, by Definition 1.1.3, we have a1 < ag. The proof is completed.

Goguen (1967) defines an L-fuzzy set on X as an X — L mapping, which is a
generalization of the concept of fuzzy set. It covers the fuzzy set as a special case
when L = [0, 1], where L is a complete lattice equipped with an operator satisfying
certain conditions. For example, Deschrijver and Kerre (2003b) define a complete
lattice as a partially ordered set (L, <) such that every nonempty subset of L has a
supremum and an infimum.

A traditional relation on the lattice (L, <), defined by

a1 L Q2 S o, € flo, and Vo, 2 Vq, (1.18)
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is also applied to the operations of IFSs (Atanassov, 1986; Cornelis et al., 2004).
However, in some situations, Eq.(1.18) cannot be used to compare IFNs. For
example, let a1 = (Ua,, Va,) = (0.2, 04) and ag = (fiays Va,) = (0.4, 0.5), where
foy = 0.2 < pig, = 0.4 and vy, = 0.4 < v, = 0.5. Then it is impossible to know
which one is larger by using Eq.(1.18). But in this case, we can use Definition 1.1.3

to compare them. In fact, since
(1) =02-04=-02, s(az)=04-0.5=-0.1

it follows from Definition 1.1.3 that o < ao.
Another well-known relation on the lattice (L, <r), defined by

01 <L 02 & oy € Hop and Vo, € Vg, (1.19)

does not conform to the implication of IFS (Atanassov, 1986).

Atanassov (1986) and De et al. (2000) introduce some basic operations on IFSs,
which not only ensure that the operational results are also IFSs, but also are useful
in the calculus of linguistic variables in an intuitionistic fuzzy environment:
Definition 1.2.1 (Atanassov, 1986) Let a set X be fixed, and let A = {{z, pa(z),
va(z)) |z € X }, Ay = {{(z, pa (@), va,(@))|z € X } and Ay = {(z, pa,(2),
va,(z)) |z € X } be three IFSs. Then the following operations are valid:

(1) A= {{z, va(z), pa(z))lz € X}

(2) A1 N Az = {(z, min{ua, (z), pa,(z)}, max{va, (z), va,(2)}) |z € X};

(3) A1 U 4z = {(z, max{ua, (2), sa,(2)},min{ua, (z), vay()}) |7 € X};

(4) A1+ Az = {{z, pa, (z) + pa, () — pa, (z) pa, (2),va, (@) va, (@) |2 € X}

(5) A1 - Az = {(z, pa, () pa,(z), va, (z) + va, (2) — v4,(z) va,(2)) |z € X}

De et al. (2000) further give another two operations of IFSs:

(6)nA={(z, 1— (1 - pa(@)", (wal&))™]z € X},

(7) A" = {(z, (ka(z))", 1 - (1 -va(@))") |z € X},
where n is a positive integer.

Motivated by the above operations, Xu (2007¢), Xu and Yager (2006) define some
basic operational laws of IFNs, which will be used in the remainder of this book:
Definition 1.2.2 (Xu, 2007e; Xu and Yager, 2006) Let o = (piq, Vo), 01 =
(Ha1s Va,) and o = (Uq,, Va,) be IFNs. Then

(1) @ = (Va, pa);

(2) o1 Nag = (min{uau #02}7 max{l/al, Vog }),

B)arVag = (ma‘x{ﬂ‘auuaz}’ min{uauytm});

(4) o1 ® a2 = (poy + oy — Has b Vo Vas);

(5) 01 ® a2 = (Hay Bazs Vo, + Vay — Vay Vay);

(6) Ao = (1—(1—pa)*, 2), A>0;



