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Preface

Il est vrai que M. Fourier avait 1'opinion .que le but principal des
mathématiques était I'uilité publique et 1’'explication des phénomeénes
naturels; mais un philosophe comme lui aurait dii savoir que le but
unique de la science, c’est I'honneur de I’esprit humain, et que sousce . -
titre, une question de nombres vaut autant qu'une question du s;yst,éme-.,:v o
du monde.! : S

C. G. J.Jacobi [71, vol. I, p. 454]

The classical problems in additive number theory are direct problems, in which we
start with a set A of integers and proceed to describe the k-fold sumset 2 A, that
is, the set of all sums of & elements of A. In an inverse problem, we begin with the
sumset hA and try to deduce information about the underlying set A. In the last
few years, there has been remarkable progress in the study of inverse problems
for finite sets in additive number theory. There are important inverse theorems due
to Freiman, Kneser, Pliinnecke, Vosper, and others. In particular, Ruzsa recently
discovered a new method to prove a generalization of Freiman’s theorem. One
goal of this book is to present Ruzsa’s beautiful proof.

The prerequisites for this book are undergraduate courses in elementary number
theory, algebra, and analysis. Beyond this, the volume is self-contained. I include

'It is true that Fourier believed that the principal goal of mathematics was the public
welfare and the understanding of nature, but as a philosopher he should have understood
that the only goal of science is the honor of the human spirit, and, in this regard, a problem
in number theory is as important as a problem in physics.



viii Preface

complete proofs of results from exterior algebra, combinatorics, graph theory,
and the geometry of numbers that are used in the proofs of the Erdos—Heilbronn
conjecture, Pliinnecke’s inequality, and Freiman's theorem. Indeed, a second goal
of the book is to introduce different methods that have been used to obtain results
in this field.

This is the second of several books on additive number theory. It is independent
of the related volume Additive Number Theory: The Classical Bases [96], which
is a study of the direct problems that are historically at the center of this subject.
I had originally planned to write one short and comprehensive book on additive
problems, but the project has become a long and complex enterprise. I am grateful
to my publisher, Springer-Verlag, for its interest in and understanding of this work.

I wish to thank Antal Balog, Gregory Freiman, Yahya Ould Hamidoune, Vsevo-
lod F. Lev, Oystein Rodseth, Imre Z. Ruzsa, and Endre Szemerédi, who provided
me with preprints of their papers on additive number theory and made helpful
comments on preliminary versions of this book. I also benefited greatly from a
conference on Freiman’s work that was organized by Jean-Marc Deshouillers at
CIRM Marseille in June, 1993, and from a workshop on combinatorial number
theory that was held at the Center for Discrete Mathematics and Theoretical Com-
puter Science (DIMACS) of Rutgers University in February, 1996. Much of this
book was written while I was on leave at the School of Mathematics of The In-
stitute for Advanced Study, and at DIMACS. I am especially grateful to Henryk
Iwaniec and the late Daniel Gorenstein for making it possible for me to work at
Rutgers.

I have taught additive number theory at Southern Illinois University at Car-
bondale, Rutgers University—New Brunswick, and the Graduate Center of the
City University of New York. I am grateful to the students and colleagues who
participated in my graduate courses and seminars.

This work was supported in part by grants from the PSC-CUNY Research Award
Program and the National Security Agency Mathematical Sciences Program.

I would very much like to receive comments or corrections from readers of this
book. My e-mail addresses are nathansn@alpha.lehman.cuny.edu and
nathanson@worldnet.att.net. A list of errata will be available on my homepage at
http://www.lehman.cuny.edu or http://math.lehman.cuny.edu/nathanson.

Melvyn B. Nathanson
Maplewood, New Jersey
June 18, 1996



Notation

N
No
Z
R
Rll
zll
C
2|
Rz
Jz
[x]
{x}
lxI

(alvaZ| “"ak)
[ay, a2, ..., 4]

[a, b]

Q(g0: 1+, qnilh,- 1)

G(V, E)
1X|
hA

h"A
A-B

hA — kA
AxA

The positive integers 1, 2,3, ...

The nonnegative integers 0, 1, 2, ...

The integers 0, +1, +2, ...

The real numbers

n-dimensional Euclidean space

The integer lattice points in R"

The complex numbers

The absolute value of the complex number

The real part of the complex number z

The imaginary part of the complex number z

The integer part of the real number x

The fractional part of the real number x

The distance from the real number x to the nearest
integer, that is, Jlx| = min({x}, 1 — {x}).

The greatest common divisor of the integers a1, a3, ..., q,
The least common multiple of the integers a;, a,, ..., a;
The interval of integers n such thata <n < b
(Context will always make clear whether [a, b) denotes
an interval of integers or the least common multiple

of two integers.)

An n-dimensional arithmetic progression of integers

A graph G with vertex set V and edge set E

The cardinality of the set X

The h-fold sumset, consisting of all sums

of h elements of A

The set of all sums of & distinct elements of A.

The difference set, consisting of all elements a — b
withaec Aandb € B

The difference set formed from the sumsets 4 A and kA
The set of all elements of the form Aa witha € A



xiv Notation

f«Lg | f(x)| < clg(x)| for some absolute constant ¢
and all x in the domain of f

f Kap. 8 1f(x)) < clg(x)| for some constant ¢ that depends
ona,b, ... and for all x in the domain of f
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1

Simple inverse theorems

1.1 Direct and inverse problems

Additive number theory is the study of sums of sets of integers. Let h > 2, and let
Ay, Aa, ..., A, be sets of integers. The sumset

A +Ar+---+ Ay

is the set of all integers of the form a) +a; +---+a,, where a; € A; fori =
1,2,...,h.If Aisasetofintegersand A; = A fori = 1,2, ..., A, then we denote
the sumset A; + Ay + - - - + A by hA. Thus, the h-fold sumset hA is the set of all
sums of h elements of A, with repetitions allowed.

Sumsets can also be defined in any abelian group and, indeed, in any set in which
there is a binary operation. For example, we shall consider sumsets in the group
Z/mZ of congruence classes modulo m, and in the group Z" of integer lattice
points in R".

A direct problem in additive number theory is a problem in which we try to
determine the structure and properties of the A-fold sumset hA when the set A
is known. An example of a direct theorem, indeed, the archetypical theorem in
additive number theory, is Lagrange’s theorem that every nonnegative integer can
be written as the sum of four squares. Thus, if A is the set of all nonnegative
squares, then the sumset 4A is the set of all nonnegative integers.

There is a simple and beautiful solution of the direct problem of describing
the structure of the h-fold sumset 2A for any finite set A of integers and for all
sufficiently large h. We require the following notation.

Let A and B be sets of integers. Let |A| denote the cardinality of A. We define



2 1. Simple inverse theorems
the difference set
A—-B={a-b:aec Aandb € B).
For any integers ¢ and g, we define the sets
c+A={c}+A,
c—A={c}- A,

and
g*A=~{qa|ace A)

Theng*(A+B)=q*xA+q xB.

Denote by (a;, . .., ai) the greatest common divisor of the integers ay, ..., a;.
If A ={ap,a,-..,ax_}is afinite set of integers suchthatapy < a; < --- < a;_),
we define

d(A) = (a) —ag,a; —ay, ..., ax-1 — ag).
Leta) = (a; — ag)/d(A)fori =0,1,...,k — 1, and let

AM = ag, a},...,a;_}).
Clearly,
O=ay<a)<---<a,_,,
d(AM) = (a,...,a;_)) =1,
A=ag+dx AN,
and

hA = {hao} + d(A) x RAM,
It follows that
|hA| = |lhAW)). 1.1

The set A is called the normal form of the set A.

Let {a, b] denote the interval of integers n such thata < n < b.

For example, if A = {8,29,71,92) and h = 2, then d(A) = 21, AW =
{0,1,3,4},2A™ = [0, 8], and 2A = {16 + 21n : n € [0, 8]}.

Lemma 1.1 Letk > 2 andleta,,...ax— be positive integers such that

(a,....a)=1.

If
k-2
@1~ 1) a6 <n < hay = (k= 2)@i-; — D,
i=)

then there exist nonnegative integers uy, .. . , ux_, such that
n=a + -+ U_1G-)

and
uy+---+ug—y <h.
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Proof. Since (ay, . ..,ax—1) = 1, there exist integers x;, .. ., xx~y such that
n=xa,+---+X-1Qk-1-

Fori = 1,...,k — 2, let u; be the least nonnegative residue of x; modulo a;_;.
Then

xiay +---+x¢_2ax—2 (mod a;_;)

£
1

= wa +- - +ugaar-2 (mod ax_y),
and so there exists an integer u;_; such that
n=uya) + -+ U202 +Ur_1ax1.

Since0 <u; <a_ —lfori=1,...,k~2,itfollows that

k=2
Ug—1Gk—1 =n — (U@ + -+ Ug2ak_2) = 1 —~(G_y — 1)2“.’ >0,
iml

and so u;_; > 0. Similarly,
Uk_18k-1] = 1 < hagy — (k — 2)(a-;y — Dax-
and
Ui~y <h—(k—2)ax— — 1).

It follows that
Wy +- Uz +upg <k —2)a-y — D+ up_y < h.

This completes the proof,
By (1.1), the structure of the sumset 4 A is completely determined by the structure
of the sumset A", and so it suffices to consider only finite sets in normal form.

Theorem 1.1 (Nathanson) Letk > 2 and let A = {ay, ay,...,ar—;} be a finite
set of integers such that

O=ag <a; <:-- <@y,
and
@,....,ax_1)=1.

Then there exist integers ¢ and d and sets C C [0,c — 2)and D < {0, d — 2] such
that

hA = CU[c, har_y —d]U (har_y — D) (1.2)
forall h > max(}, (k — 2)(ay—y — Dag-1).



