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Introduction

‘I never heard of “Uglification,”
Alice ventured to say. ‘What is
it?’’

Lewis Carroll,
“Alice in Wonderland”

Subject and motivation. The present book is devoted to a theory of mul-
tipliers in spaces of differentiable functions and its applications to analysis,
partial differential and integral equations. By a multiplier acting from one
function space S, into another S5, we mean a function which defines a bounded
linear mapping of §; into S; by pointwise multiplication. Thus with any pair
of spaces S1, Sz we associate a third one, the space of multipliers M(S; — S,)
endowed with the norm of the operator of multiplication. In what follows, the
role of the spaces S) and S; is played by Sobolev spaces, Bessel potential
spaces, Besov spaces, and the like.

The Fourier multipliers are not dealt with in this book. In order to empha-
size the difference between them and the multipliers under consideration, we
attach Sobolev’s name to the latter. By coining the term Sobolev multipliers
we just hint at various spaces of differentiable functions of Sobolev’s type,
being fully aware that Sobolev never worked on multipliers. After all, Fourier
never did either.

Sobolev multipliers arise in many problems of analysis and theories of par-
tial differential and integral equations. Coefficients of differential operators can
be naturally considered as multipliers. The same is true for symbols of more
general pseudo-differential operators. Multipliers also appear in the theory
of differentiable mappings preserving Sobolev spaces. Solutions of boundary
value problems can be sought in classes of multipliers. Because of their al-
gebraic properties, multipliers are suitable objects for generalizations of the
basic facts of calculus (theorems on implicit functions, traces and extensions,
point mappings and their compositions etc.) Moreover, some basic operators

V.G. Maz'ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, 1
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2 Introduction

of harmonic analysis, like the classical maximal and singular integral opera-
tors, act in certain classes of multipliers.

We believe that the calculus of Sobolev multipliers provides an adequate
language for future work in the theory of linear and nonlinear differential and
pseudodifferential equations under minimal restrictions on the coefficients,
domains, and other data.

Before the 1970s, the word multiplier was usually associated with the
name of Fourier, and a deep theory of L,-Fourier multipliers created by
Marcinkiewicz, Mikhlin, Hérmander et al was quite popular. As for the muiti-
pliers preserving a space of differentiable functions, only a few isolated results
were known (Devinatz and Hirschman [DH], Hirschman [Hil], [Hi2], Strichartz
[Str], Polking [Poll], Peetre [Pe2]), while the multipliers in pairs of such spaces
were not considered at all.

The first (and the only one for the time being) attempt to work out a more
or less comprehensive theory of multipliers acting either in one or in a pair
of spaces of Sobolev type was undertaken by the authors in the late 1970s
and early 1980s [Maz10], [Maz12], [MSh1]-[MSh16]. Results of that theory
were collected in our monograph “Theory of Multipliers in Spaces of Differ-
entiable Functions” (Pitman, 1985) [MSh16]. During the last two decades, we
continued to work in the area, adding new results and developing further ap-
plications [Sh2]-[Sh14], [MSh17]-[MSh23]. We wish to reflect the present state
of our theory in this book. An essential part of the aforementioned monograph
is also included here.

No results concerning multipliers in spaces of analytic functions are men-
tioned in what follows, in contrast to [MSh16]. To describe progress in this
area achieved during the last twenty five years would require a disproportion-
ate growth of the book.

Structure of the book. The book consists of two parts. Part I is devoted to
the theory of multipliers and covers the following topics:

Trace inequalities

Analytic characterization of multipliers

Relations between spaces of Sobolev multipliers and other function spaces
Maximal subalgebras of multiplier spaces

Traces and extensions of multipliers

Essential norm and compactness of multipliers

Miscellaneous properties of multipliers (spectrum, composition and im-
plicit function theorems, point mappings preserving Sobolev spaces, etc.)

In Part IT we dwell upon several applications of this theory. Their list is
as follows:

o Continuity and compactness of differential operators in pairs of Sobolev
spaces
¢ Multipliers as solutions to linear and quasilinear elliptic equations
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e Higher regularity in the single and double layer potential theory for
Lipschitz domains

¢ Regularity of the boundary in L,-theory of elliptic boundary value prob-
lems

¢ Singular integral operators in Sobolev spaces

Each chapter starts with a short introductory outline of the included
material.

Readership. The volume is addressed to mathematicians working in func-
tional analysis and in the theories of partial differential, integral, and pseudo-
differential operators. Prerequisites for reading this book are undergraduate
courses in these subjects.
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