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Preface

The 6th China International Conference on Information Security and
Cryptology (Inscrypt 2010) was held in Shanghai, China during 20-23, Octo-
ber 2010. The conference is a leading annual international event in the area of
cryptography and information security taking place in China. Inscrypt conti-
nues to get the support of the entire international community, reflecting the
fact that the research areas covered by the conference are important to modern
computing, where increased security, trust, safety and reliability are required.

Inscrypt 2010 was co-organized by the State Key Laboratory of Information
Security and by the Chinese Association for Cryptologic Research, in coope-
ration with Shanghai Jiaotong Univeristy and the International Association for
Cryptologic Research (IACR). The conference was further sponsored by the Ins-
titute of Software, the Graduate University of the Chinese Academy of Science
and the National Natural Science Foundations of China.

The scientific program of the conference covered all areas of current research
in eryptography and security, with sessions on central subjects of cryptographic
research and on some important subjects of information security. The interna-
tional Program Committee of Inscrypt 2010 received a total of 125 submissions
from more than 29 countries and regions, from which only 35 submissions were
selected for presentation in the regular papers track and 13 submissions in the
short papers track. Short track papers appear in these proceedings. All anony-
mous submissions were reviewed by experts in the relevant areas and based on
their ranking, technical remarks and strict selection criteria the papers were cho-
sen to the various tracks. The selection to both tracks was a highly competitive
process. We further note that due to the conference format, many good papers
were regrettably not accepted. Besides the contributed papers, the program also
included two invited presentations by Bart Preneel and Moti Yung.

Inscrypt 2010 was made possible by a joint effort of numerous people and
organizations worldwide. We take this opportunity to thank the Program Com-
mittee members and the external experts they employed for their invaluable help
in producing the conference program. We further thank the Conference Organi-
zing Committee, the various sponsors, and the conference attendees. Last but
not least, we express our great gratitude to all the authors who submitted papers
to the conference, the invited speakers, and the session Chairs.

Xuejia Lai
Moti Yung
December 2010
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Attacking Code/Lattice-based Cryptosystems
Using Partial Knowledge

Robert Niebuhr!, Pierre-Louis Cayrel?, Stanislav Bulygin?, Johannes
Buchmann?+2

1 Technische Universitdt Darmstadt Fachbereich, Informatik Kryptographie und
Computeralgebra, HochschulstraBie 10, 64289 Darmstadt Germany
rniebuhr@cdc.informatik.tu-darmstadt.de
2 CASED - Center for Advanced Security Research Darmstadt,
Mornewegstrasse 32, 64293 Darmstadt Germany
{pierre-louis.cayrel,Stanislav.Bulygin }Qcased.de

Abstract. Code-based cryptographic schemes are promising candidates
for post-quantum cryptography since they are fast, require only basic
arithmetic, and because their security is well understood. While most
analyses of security assume that an attacker does not have any informa-
tion about the secret key, we show that in certain scenarios an attacker
can gain partial knowledge of the secret key. We present how this know-
ledge can be used to improve the efficiency of an attack, and give new
bounds for the complexity of such an attack. In this paper, we analyze
two types of partial knowledge including concrete scenarios, and give an
idea how to prevent the leak of such knowledge to an attacker.

Keywords: Information set decoding, Partial knowledge, Codes, Post
quantum, Cryptography

1 Introduction

In- 1994, P. Shor [18] has shown that quantum computers can break most or all
“classical” cryptosystems, e.g. those based on RSA or elliptic curves. Therefore,
it is crucial to develop cryptosystems that are resistant to quantum computer at-
tacks. Code-based cryptography is a very promising candidate for post-quantum
cryptography since the cryptographic schemes are usually fast and do not require
special hardware, specifically no cryptographic co-processor. The first applica-
tion was the McEliece encryption scheme [13] which was published in 1978. It
is as old as RSA and has resisted cryptanalysis to date (except for a parameter
adjustment).

To analyze the security of code-based schemes, cryptanalysts develop and
improve (generic as well as specific) attacks, or propose lower bounds for such
attacks. All of these developments, however, assume that an attacker does not
have any knowledge about the private key.
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Partial Knowledge

In some scenarios though an attacker can obtain partial knowledge of the private
information and exploit this to improve the efficiency of an attack. Examples are:

1) Scheme that uses a restricted error vector domain: Some cryptog-
raphic schemes, e.g. NTRU (11], restrict the domain of the error vector.
In this example, while the scheme itself is defined over Fy for ¢ = 128 or
g = 256, the error vector e is ternary, i.e. e € {0,1,—1}". Information-set
decoding (ISD) algorithms can be used to attack such systems, and we will
show how to exploit this knowledge. We will analyze this example in more
detail in section 5.

2) Schemes that leak information about the error vector entries: In
Stern’s identification (ID) scheme [20], the prover sends a random permu-
tation of the private vector to the verifier. This reveals the non-zero values
of the vector, while their positions remains secret. While this information is
useless when binary codes are used (as for the original scheme), it does give
the attacker an advantage when codes over F, are used. We will analyze this
example in more detail in section 4.

Another type of partial knowledge would be the use of error vectors with a
certain structure, e.g. regular words which are used for the FSB hash function [1].
However, in this specific context this knowledge does not necessarily help an
attacker, since this restricts both the set of error vectors that need to be searched
as well as the number of vectors that lead to a successful attack. Therefore, we
will not consider this type of partial knowledge in this paper.

Our Contributions

In this paper we will analyze two types of partial knowledge an attacker can
obtain in certain scenarios. We will show that they can be used to improve the
efficiency of an attack by restricting the space that need to be searched and
prove new lower bounds for these cases. As a first examples, we analyze a g-ary
version of Stern’s ID scheme to apply our results and discuss a method to prevent
the information leak. A second example shows how to attack the NTRU scheme
using our modified ISD algorithm.

Organization of The Paper

In section 2 we review some concepts and notation from code-based cryptogra-
phy, and describe the Information Set Decoding algorithm on which our analysis
is based. section 3 covers the analysis of the above types of partial knowledge.
In the following section 4 we apply our results to using the example of Stern’s
ID scheme and to NTRU in section 5. We conclude in section 6.
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2 Review

2.1 Coding Theory over F,

In this paper, we consider linear error-correcting codes over a finite field F,;. A
linear code C is a k-dimensional subspace of an n-dimensional vector space over
F, and is called an [n,k] code. The elements of a code are called codewords.
The (Hamming) weight of a vector is the number of its non-zero entries, and
the (Hamming) distance of two vectors is the weight of their difference. The
minimum distance d of a code is the minimum distance between any two distinct
codewords; a code with these properties is denoted as an [n, k,d] code. Codes
that are able to correct up to t errors are denoted (n, k, t)-codes.

Another common notation is the co-dimension r of a code where r =n — k.

Definition 1 (Generator and Parity Check Matrix). Let C be a linear
code over Fy. A generator matriz G of C is a matriz whose rows form a basis of
C:

C={zG:z¢€ ]F’;}
Two generator matrices generate equivalent codes if one is obtained from the
other by a linear transformation. Therefore, we can write any generator matriz G
in systematic form G = [I|R] with R € F¥*", which allows a more compact

representation.
A parity check matriz H of C is defined by

C={m€F;':H:z:T=0}
and generates the dual space of C. If C is generated by G = [Ix|R], then a parity

check matriz for C is H = [—RT|I,] (sometimes H is transformed so that the
identity submatriz is on the left hand side).

The problems which cryptographic applications rely upon can have different
numbers of solutions. For example, public key encryption schemes usually have
exactly one solution, while digital signatures often have more than one possible
solution. The uniqueness of solutions can be expressed by the Gilbert-Varshamov
(GV) bound:

Definition 2 (g-ary Gilbert-Varshamov bound). If
d—2 n
> (a- 1)'( ) <q~*
i=0 ¢

there ezist a [n, k,d] code over F,.
For NTRU and Stern’s scheme we have k = g, and

g(q —1) (7;) < q/?

R,a.ndor‘xil godes, vyhich are used in Stern’s scheme, on average satisfy this
bound (375 (q — 1)*(}) = ¢"%).
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2.2 Information Set Decoding (ISD)

Information Set Decoding algorithms are often the most efficient generic attack
against code-based cryptosystems like McEliece, the CFS signature scheme [9],
the FSB hash function [1], and others. Over the years, there have been many
improvements and generalizations of this attack, e.g. Lee-Brickell [12], Stern [19],
Canteaut-Chabaud [7], Bernstein et al. [6], Finiasz-Sendrier [10], Peters [16],
Niebuhr et al. [15] and Peters [17].

ISD algorithms solve the problem of decoding codewords with errors. More
specifically, if m is a cleartext and ¢ = mG + e a ciphertext, where e is a
random vector of weight ¢, then ISD algorithms take ¢ as input and recover m
(or, equivalently, ). Since Hc™ = H(mG + ¢)T = HeT, the problem is often
formulated using a parity check matrix:

Problem 1 (The g-ary syndrome decoding problem). Given a matrix H
and a vector s, both over Fg, and a non-negative integer ¢; find a vector z € F,
of weight ¢ such that HzT = s.

This problem was proved to be NP-complete, in 1978 for binary codes [5]
and in 1994 for codes over all finite fields ([3, in russian] and [2]).

If the number of errors that have to be corrected is smaller than the GV
bound, then there is on average only one solution. Otherwise, there can be several
solutions. :

A basic version of an ISD algorithm works as follows: A random permutation
P is applied to H in the hope that all columns corresponding to error positions
in e are moved to the left hand side of the matrix (the first n— k columns). Then
Gaussian elimination is used to transform H into the form H' = [I,,_|R], where
I,—k is the identity submatrix, and the same steps are performed on s to get
§'. If s’ has a weight not exceeding ¢, the algorithm has succeeded; we can read
of the error positions from s’ and get e = P~[s’|0]. Otherwise, the algorithms
restarts.

Most advanced ISD versions make use of the birthday paradox: They allow
a certain (usually small) number p of errors in the last k¥ columns of H. Then
lists of column sums of H are used to find these error positions. If we split the
right hand part of H into [H;|H2]T, and write e = [e1|ez], then we search for
a vector es of weight p such that s — Hze;r, has weight ¢ — p, and the non-zero
positions of s — Hae] show the remaining ¢ — p error positions.

Since our paper modifies the ISD algorithm described in [15], we will review
some of the concepts and notations.

In each step, we randomly re-arrange the columns of the parity check matrix
H and transform it into the form

H= (I"*O’“—’ g;) | (1)

where I,,_;_; is the identity matrix of size (n — k — [). Usually, the columns are
chosen adaptively to guarantee the success of this step. The variables [ and p
(see next step) are algorithm parameters optimized for each attack.
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The error vector we are looking for has p errors in the column set corre-
sponding to H; and Hj, and the remaining (¢ — p) errors in the first (n — k —1)
columns. We first check all possible error patterns of p errors in the last k + 1
columns such that the sum S of those p columns equals the syndrome s in the
last ! rows. We do this by searching for collisions between the two sets L; and
Ls, where

L, = {HzeT e W]_} (2)
L, = {s - ngT rec€ Wz} (3)

where W; C Wk+l§lP/2J;q and Wy C Wk+l;[p/2'|;q are given to the algorithm,
and Wk i;p;q is the set of all g-ary words of length k + ! and weight p. Writing
e = [e¢'|le1 + e2] and s = [sy|s2] with sz of length [, this means we search for
vectors e; and ey of weight |p/2| and [p/2], respectively, such that

Hy - [61 + 62]T = S'zr

If this succeeds, we compute the difference S — s; if this does not have weight
t — p, the algorithm restarts. Otherwise, the non-zero entries correspond to the
remaining ¢ — p errors:

I, _x_i|H e
T _ n—k—l|{11
He" = ( 0 Hz) (61+62)

In_k—1-€T+Hy-(e1+e)T
H, - (61 + 62)T

(
= (I""“B’ 'em) +8
(

Therefore, we have
Ing1- €T =sT —Hy-(e1+e2)T

revealing the remaining columns of e.

3 Impact of Partial Knowledge on ISD

We will analyze two types of partial knowledge:

1) Error values come from a set E C F,.
2) The entries of e are known but their positions are not.

There are various situations where an attacker has some partial knowledge of
these types. For example, the NTRU cryptosystem can be attacked by an ISD-
like algorithm; although the cryptosystem is defined over F,; (common values for
g are 128 or 256), the random vector required to break the scheme is only ternary.



