C¥=C++¥§.ﬁ
k& BRIE -

PEARSON

C++

Primer Plus

(ZE6HR) Z=IZhR (Fr)
[%] Stephen Prata & - .

B 2AFRAENC++i75E S HHIZ .
Fdl ;@%C++11a~ﬂm/’§ C++

Primer Plus

Sixth Edition

Developer’s Library

C++

Primer Plus
(E6hR) EELS’ZHJSi (FR)

AN R BB RO R R
5

Table of Contents

13

14

15

16

Class Inheritance 707

Beginning with a Simple Base Class 708
Inheritance: An Is-a Relationship 720
Polymorphic Public Inheritance 722
Static and Dynamic Binding 737

Access Control: protected 745
Abstract Base Classes 746

Inheritance and Dynamic Memory Allocation
Class Design Review 766

Summary 778

Chapter Review 779

Programming Exercises 780

Reusing Code in C++ 785
Classes with Object Members 786
Private Inheritance 797

Multiple Inheritance 808

Class Templates 830

Summary 866

Chapter Review 869

Programming Exercises 871

Friends, Exceptions, and More 877
Friends 877

Nested Classes 889

Exceptions 896

Runtime Type Identification 933

Type Cast Operators 943

Summary 947

Chapter Review 947

Programming Exercises 949

The string Class and the Standard

Template Library 951

The string Class 952

Smart Pointer Template Classes 968
The Standard Template Library 978
Generic Programming 992

Function Objects (a.k.a. Functors) 1026
Algorithms 1035

Other Libraries 1045

751

Contents

17

18

Summary 1054
Chapter Review 1056
Programming Exercises 1057

Input, Output, and Files 1061

An Overview of C++ Input and Output 1062
Output with cout 1069

Input with cin 1093

File Input and Output 1114

Incore Formatting 1142

Summary 1145

Chapter Review 1146

Programming Exercises 1148

Visiting with the New C++ Standard 1153
C++11 Features Revisited 1153

Move Semantics and the Rvalue Reference 1164
New Class Features 1178

Lambda Functions 1184

Wrappers 1191

Variadic Templates 1197

More C++11 Features 1202

Language Change 1205

What Now? 1207

Summary 1208

Chapter Review . 1209

Programming Exercises 1212

Appendixes

O m m U O W >

Number Bases 1215

C++ Reserved Words 1221

The ASCII Character Set 1225
Operator Precedence 1231
Other Operators 1235

The string Template Class 1249

The Standard Template Library Methods and
Functions 1271

Selected Readings and Internet Resources 1323
Converting to ISO Standard C++ 1327

Answers to Chapter Reviews 1335

Index 1367

13

Class Inheritance

In this chapter you’ll learn about the following:

» Inheritance as an is-a relationship

» How to publicly derive one class from another
s Protected access

« Constructor member initializer lists

s Upcasting and downcasting

s Virtual member functions

» Early (static) binding and late (dynamic) binding
» Abstract base classes

s Pure virtual functions

s When and how to use public inheritance

One of the main goals of object-oriented programming is to provide reusable code.
When you develop a new project, particularly if the project is large, it’s nice to be able to
reuse proven code rather than to reinvent it. Employing old code saves time and because
it has already been used and tested, can help suppress the introduction of bugs into a pro-
gram. Also the less you have to concern yourself with details, the better you can concen-
trate on overall program strategy.

Traditional C function libraries provide reusability through predefined, precompiled
functions, such as strlen() and rand(), that you can use in your programs. Many ven-
dors furnish specialized C libraries that provide functions beyond those of the standard C
library. For example, you can purchase libraries of database management functions and of
screen control functions. However, function libraries have a limitation: Unless the vendor
supplies the source code for its library functions (and often it doesn’t), you can'’t extend or
modify the functions to meet your particular needs. Instead, you have to shape your pro-
gram to meet the workings of the library. Even if the vendor does supply the source code,
you run the risk of unintentionally modifying how part of a function works or of altering
the relationships among library functions as you add your changes.

708

Chapter 13 Class Inheritance

C++ classes bring a higher level of reusability. Many vendors now offer class libraries,
which consist of class declarations and implementations. Because a class combines data
representation with class methods, it provides a more integrated package than does a
function library. A single class, for example, may provide all the resources for managing a
dialog box. Often class libraries are available in source code, which means you can modify
them to meet your needs. But C++ has a better method than code modification for
extending and modifying classes. This method, called class inheritance, lets you derive new
classes from old ones, with the derived class inheriting the properties, including the meth-
ods, of the old class, called a base class. Just as inheriting a fortune is usually easier than
earning one from scratch, deriving a class through inheritance is usually easier than
designing a new one. Here are some things you can do with inheritance:

* You can add functionality to an existing class. For example, given a basic array class,
you could add arithmetic operations.

» You can add to the data that a class represents. For example, given a basic string
class, you could derive a class that adds a data member representing a color to be
used when displaying the string.

= You can modify how a class method behaves. For example, given a Passenger class
that represents the services provided to an airline passenger, you can derive a
FirstClassPassenger class that provides a higher level of services.

Of course, you could accomplish the same aims by duplicating the original class code
and modifying it, but the inheritance mechanism allows you to proceed by just providing
the new features.You don’t even need access to the source code to derive a class. Thus, if
you purchase a class library that provides only the header files and the compiled code for
class methods, you can still derive new classes based on the library classes. Conversely, you
can distribute your own classes to others, keeping parts of your implementation secret, yet
still giving your clients the option of adding features to your classes.

Inheritance is a splendid concept, and its basic implementation is quite simple. But
managing inheritance so that it works properly in all situations requires some adjustments.
This chapter looks at both the simple and the subtle aspects of inheritance.

Beginning with a Simple Base Class

When one class inherits from another, the original class is called a base class, and the
inheriting class is called a derived class. So to illustrate inheritance, let’s begin with a base
class. The Webtown Social Club has decided to keep track of its members who play table
tennis. As head programmer for the club, you have designed the simple
TableTennisPlayer class defined in Listings 13.1 and 13.2.

Listing 13.1 tabtenn0.h

// tabtenn0.h -- a table-tennis base class
#ifndef TABTENNO H_

#define TABTENNO_H_

#include <string>

Beginning with a Simple Base Class

using std::string;
// simple base class
class TableTennisPlayer
{
private:
string firstname;
string lastname;
bool hasTable;
public:
TableTennisPlayer (const string & fn = “none",
const string & 1ln

void Name () const;

bool HasTable() const { return hasTable; };

void ResetTable(bool v) { hasTable = v; };
Vi

#endif

“none", bool ht = false);

Listing 13.2 tabtenn0.cpp

//tabtenn0.cpp -- simple base-class methods
#include “tabtenn0.h"
#include <iostream>

TableTennisPlayer: :TableTennisPlayer (const string & fn,
const string & ln, bool ht) : firstname(fn),
lastname (1n), hasTable(ht) {}

void TableTennisPlayer: :Name() const

{

std::cout << lastname << *, " << firstname;

All the TableTennisPlayer class does is keep track of the players’ names and whether
they have tables. There are a couple of points to notice. First, the class uses the standard
string class to hold the names. This is more convenient, flexible, and safer than using a
character array. And it is rather more professional than the String class of Chapter 12,
“Classes and Dynamic Memory Allocation.” Second, the constructor uses the member
initializer list syntax introduced in Chapter 12.You could also do this:

TableTennisPlayer: :TableTennisPlayer (const string & fn,
const string & 1n, bool ht)

firstname = fn;
lastname = 1n;
hasTable = ht;

709

710

Chapter 13 Class Inheritance

However, this approach has the effect of first calling the default string constructor for
firstname and then invoking the string assignment operator to reset firstname to fn.
But the member initializer list syntax saves a step by just using the string copy construc-
tor to initialize firstname to fn.

Listing 13.3 shows this modest class in action.

Listing 13.3 usett0.cpp

// usettO.cpp -- using a base class
#include <iostreams
#include "tabtenn0.h"

int main (void)
{
using std::cout;
TableTennisPlayer playerl ("Chuck", "Blizzard", true);
TableTennisPlayer player2("Tara", "Boomdea", false);
playerl.Name() ;
if (playerl.HasTable())
cout << ": has a table.\n";
else
cout << ": hasn't a table.\n";
player2.Name() ;
if (player2.HasTable())
cout << ": has a table";
else
cout << ": hasn't a table.\n";

return 0;

And here’s the output of the program in Listings 13.1, 13.2, and 13.3:

Blizzard, Chuck: has a table.
Boomdea, Tara: hasn't a table.

Note that the program uses constructors with C-style string arguments:

TableTennisPlayer playerl ("Chuck", "Blizzard", true);
TableTennisPlayer player2("Tara", "Boomdea", false);

But the formal parameters for the constructor were declared as type const string &.
This is a type mismatch, but the stxing class, much like the String class of Chapter 12,
has a constructor with a const char * p;lrameter, and that constructor is used automati-
cally to create a string object initialized by the C-style string. In short, you can use
either a string object or a C-style string as an argument to the TableTennisPlayer
constructor. The first invokes a string constructor with a const string & parameter,
and the second invokes a string constructor with a const char * parameter.

Beginning with a Simple Base Class 711

Deriving a Class

Some members of the Webtown Social Club have played in local table tennis tourna-
ments, and they demand a class that includes the point ratings they’ve earned through
their play. Rather than start from scratch, you can derive a class from the
TableTennisPlayer class. The first step is to have the RatedpPlayer class declaration
show that it derives from the TableTennisPlayer class:

// RatedPlayer derives from the TableTennisPlayer base class
class RatedPlayer : public TableTennisPlayer

{
}i

The colon indicates that the RatedPlayer class is based on the TableTennisPlayer
class. This particular heading indicates that TableTennisPlayer is a public base class; this
is termed public derivation. An object of a derived class incorporates a base class object.
With public derivation, the public members of the base class become public members of
the derived class. The private portions of a base class become part of the derived class, but
they can be accessed only through public and protected methods of the base class. (We'll
get to protected members in a bit.)

What does this accomplish? If you declare a RatedPlayer object, it has the following
special properties:

» An object of the derived type has stored within it the data members of the base
type. (The derived class inherits the base-class implementation.)

= An object of the derived type can use the methods of the base type. (The derived
class inherits the base-class interface.)

Thus, a RatedPlayer object can store the first name and last name of each player
and whether the player has a table. Also a RatedPlayer object can use the Name (),
HasTable (), and ResetTable () methods from the TableTennisPlayer class (see
Figure 13.1 for another example).

What needs to be added to these inherited features?

» A derived class needs its own constructors.

s A derived class can add additional data members and member functions as needed.

In this particular case, the class needs one more data member to hold the ratings
value. It should also have a method for retrieving the rating and a method for resetting
the rating. So the class declaration could look like this:

// simple derived class
class RatedPlayer : public TableTennisPlayer
{
private:
unsigned int rating; // add a data member

712 Chapter 13 Class Inheritance

public:
RatedPlayer (unsigned int r = 0, const string & fn = "none",
const string & 1ln = "none", bool ht = false);
RatedPlayer (unsigned int r, const TableTennisPlayer & tp);
unsigned int Rating() const { return rating; } // add a method
void ResetRating (unsigned int r) {rating = r;} // add a method

bi

7 I
private:

balance:
public:

double Balance();
\ .)

BankAccount object

class Overdraft : public BankAccount {...};

f e ——————— R) private balance

, . : member inherited

no direct access.‘k”L”‘,,f but not directly
balance: E accessible

public: : public member

as a public member

I T

value of balance
RN

prlvat;AXLoan: member indirectly
. accessible via inherited
public: public member function
oo Balance()
\. /

Overdraft object

Figure 13.1 Base-<class and derived-class objects.

The constructors have to provide data for the new members, if any, and for the inher-
ited members. The first RatedPlayer constructor uses a separate formal parameter for
each member, and the second RatedPlayer constructor uses a TableTennisPlayer
parameter, which bundles three items (£irstname, lastname, and hasTable) into a sin-
gle unit.

Beginning with a Simple Base Class 713

Constructors: Access Considerations

A derived class does not have direct access to the private members of the base class; it has
to work through the base-class methods. For example, the RatedPlayer constructors can-
not directly set the inherited members (firstname, lastname, and hasTable). Instead,
they have to use public base-class methods to access private base-class members. In partic-
ular, the derived-class constructors have to use the base-class constructors.

When a program constructs a derived-class object, it first constructs the base-class
object. Conceptually, that means the base-class object should be constructed before the
program enters the body of the derived-class constructor. C++ uses the member initial-
izer list syntax to accomplish this. Here, for instance, is the code for the first RatedPlayer
constructor:

RatedPlayer: :RatedPlayer (unsigned int r, const string & fn,
const string & 1n, bool ht) : TableTennisPlayer(fn, 1ln, ht)

rating = r;

The following part is the member initializer list:
: TableTennisPlayer(fn, 1ln, ht)

It’s executable code, and it calls the TableTennisPlayer constructor. Suppose, for
example, a program has the following declaration:
RatedPlayer rplayerl(1140, "Mallory", "Duck", true);

The RatedPlayer constructor assigns the actual arguments "Mallory", "Duck", and
true to the formal parameters £n, 1n, and ht. It then passes these parameters on as actual
arguments to the TableTennisPlayer constructor. This constructor, in turn, creates the
embedded TableTennisPlayer object and stores the data "Mallory", "Duck", and true
in it. Then the program enters the body of the RatedPlayer constructor, completes the

construction of the RatedPlayer object, and assigns the value of the parameter r (that is,
1140) to the rating member (see Figure 13.2 for another example).

derived-class constructor passing arguments from the derived-class
constructor to the base-class constructor

Overdraft::Overdraft(const char * s,_long an, double bal,

double ml, double r) : BandAccount(s, an, bal)

base-class constructor

Figure 13.2 Passing arguments through to a base-class constructor.

714

Chapter 13 Class Inheritance

What if you omit the member initializer list?

RatedPlayer: :RatedPlayer (unsigned int r, const string & fn,
const string & 1ln, bool ht) // what if no initializer list?

rating = r;

The base-class object must be created first, so if you omit calling a base-class construc-
tor, the program uses the default base-class constructor. Therefore, the previous code is the
same as the following:

RatedPlayer: :RatedPlayer (unsigned int r, const string & fn,
const string & 1n, bool ht) // : TableTennisPlayer()

rating = r;

Unless you want the default constructor to be used, you should explicitly provide the
correct base-class constructor call.
Now let’s look at code for the second constructor:

RatedPlayer: :RatedPlayer (unsigned int r, const TableTennisPlayer & tp)
: TableTennisPlayer (tp)

rating = r;

Again, the TableTennisPlayer information is passed on to a TableTennisPlayer
constructor:

TableTennisPlayer (tp)

Because tp is type const TableTennisPlayer &, this call invokes the base-class copy
constructor. The base class didn’t define a copy constructor, but recall from Chapter 12
that the compiler automatically generates a copy constructor if one is needed and you
haven'’t defined one already. In this case, the implicit copy constructor, which does mem-
berwise copying, is fine because the class doesn’t directly use dynamic memory allocation.
(The string members do use dynamic memory allocation, but, recall, memberwise copy-
ing will use the string class copy constructors to copy the string members.)

You may, if you like, also use member initializer list syntax for members of the derived
class. In this case, you use the member name instead of the class name in the list. Thus, the
second constructor can also be written in this manner:

// alternative version

RatedPlayer: :RatedPlayer {unsigned int r, const TableTennisPlayer & tp)
: TableTennisPlayer(tp), rating(r)

Beginning with a Simple Base Class

These are the key points about constructors for derived classes:

= The base-class object is constructed first.

= The derived-class constructor should pass base-class information to a base-class
constructor via a member initializer list.

» The derived-class constructor should initialize the data members that were added
to the derived class.

This example doesn’t provide explicit destructors, so the implicit destructors are used.
Destroying an object occurs in the opposite order used to construct an object.That is, the
body of the derived-class destructor is executed first, and then the base-class destructor is
called automatically.

Note

- When creating an object of a derived class, a program first calls the base-class constructor
and then calls the derived-class constructor. The base-class constructor is responsible for
initializing the inherited data members. The derived-class constructor is responsible for ini-

i tializing any added data members. A derived-class constructor always calls a base-class con-

i structor. You can use the initializer list syntax to indicate which base-class constructor to

- use. Otherwise, the default base-class constructor is used.

: When an object of a derived class expires, the program first calls the derived-class destruc-
* tor and then calls the base-class destructor.

Member Initializer Lists

A constructor for a derived class can use the initializer list mechanism to pass values along
to a base-class constructor. Consider this example:

derived: :derived(typel x, type2 y) : base(x,y) // initializer list

{
}

Here, derived is the derived class, base is the base class, and x and y are variables used
by the base-class constructor. If, say, the derived-class constructor receives the arguments
10 and 12, this mechanism then passes 10 and 12 on to the base-class constructor
defined as taking arguments of these types. Except for the case of virtual base classes
(see Chapter 14, “Reusing Code in C++"), a class can pass values back only to its immedi-
ate base class. However, that class can use the same mechanism to pass back information
to its immediate base class, and so on. If you don't supply a base-class constructor in a
member initializer list, the program uses the default base-class constructor. The member ini-
tializer list can be used only in constructors.

715

716 Chapter 13 Class Inheritance

Using a Derived Class

To use a derived class, a program needs access to the base-class declarations. Listing 13.4
places both class declarations in the same header file.You could give each class its own
header file, but because the two classes are related, it makes more organizational sense to
keep the class declarations together.

Listing 13.4 tabtennl.h

// tabtennl.h -- a table-tennis base class
#ifndef TABTENN1 H_
#define TABTENN1 H_
#include <string>
using std::string;
// simple base class
class TableTennisPlayer
{
private:
string firstname;
string lastname;
bool hasTable;
public:
TableTennisPlayer (const string & fn = "none",
const string & 1n = "none", bool ht = false);
void Name () const;
bool HasTable() const { return hasTable; };
void ResetTable(bool v) { hasTable = v; };

}i

// simple derived class
class RatedPlayer : public TableTennisPlayer

{

private:
unsigned int rating;

public:
RatedPlayer (unsigned int r = 0, const string & fn = "none",

const string & ln = "none", bool ht = false);

RatedPlayer (unsigned int r, const TableTennisPlayer & tp);
unsigned int Rating() const { return rating; }
void ResetRating (unsigned int r) {rating = r;}

}i

#endif

Listing 13.5 provides the method definitions for both classes. Again, you could use sep-
arate files, but it’s simpler to keep the definitions together.

Beginning with a Simple Base Class

Listing 13.5 tabtennl.cpp

//tabtennl.cpp -- simple base-class methods
#include "tabtennl.h"
#include <iostream>

TableTennisPlayer::TableTennisPlayer (const string & fn,
congt string & ln, bool ht) : firstname(fn),
lastname (1n), hasTable(ht) {}

void TableTennisPlayer::Name() const

{

std::cout << lastname << ", " << firstname;

// RatedPlayer methods
RatedPlayer: :RatedPlayer (unsigned int r, const string & fn,
const string & 1ln, bool ht) : TableTennisPlayer(fn, 1ln, ht)

rating = r;

}

RatedPlayer: :RatedPlayer (unsigned int r, const TableTennisPlayer & tp)
: TableTennisPlayer (tp), rating(r)

Listing 13.6 creates objects of both the TableTennisPlayer class and the RatedPlayer
class. Notice that objects of both classes can use the TableTennisPlayer class Name () and
HasTable () methods.

Listing 13.6 wusettl.cpp

// usettl.cpp -- using base class and derived class
#include <iostream>
#include "tabtennl.h"

int main (void)

{
using std::cout;
using std::endl;

TableTennisPlayer playerl("Tara", "Boomdea", false);
RatedPlayer rplayerl(1140, "Mallory", "Duck", true);
rplayerl.Name () ; // derived object uses base method

if (rplayerl.HasTable())
cout << ": has a table.\n";
else

717

718

Chapter 13 Class Inheritance

cout << ": hasn't a table.\n";
playerl.Name () ; // base object uses base method
if (playerl.HasTable())

cout << ": has a table";
else

cout << ": hasn't a table.\n";

cout << "Name: ";

rplayerl.Name () ;

cout << "; Rating: " << rplayerl.Rating() << endl;
// initialize RatedPlayer using TableTennisPlayer object

RatedPlayer rplayer2(1212, playerl);

cout << "Name: ";

rplayer2.Name () ;

cout << "; Rating: " << rplayer2.Rating() << endl;

return 0;

Here is the output of the program in Listings 13.4, 13.5, and 13.6:

Duck, Mallory: has a table.
Boomdea, Tara: hasn't a table.
Name: Duck, Mallory; Rating: 1140
Name: Boomdea, Tara; Rating: 1212

Special Relationships Between Derived and Base Classes

A derived class has some special relationships with the base class. One, which you’ve just
seen, is that a derived-class object can use base-class methods, provided that the methods
are not private:

RatedPlayer rplayerl (1140, "Mallory", "Duck", true);
rplayerl.Name(); // derived object uses base method

Two other important relationships are that a base-class pointer can point to a derived-
class object without an explicit type cast and that a base-class reference can refer to a
derived-class object without an explicit type cast:

RatedPlayer rplayerl(1140, "Mallory", "Duck", true);
TableTennisPlayer & rt = rplayer;

TableTennigPlayer * pt = &rplayer;

rt.Name () ; // invoke Name() with reference
pt->Name(); // invoke Name() with pointer

However, a base~class pointer or reference can invoke just base-class methods, so you
couldn’t use rt or pt to invoke, say, the derived-class ResetRanking () method.

Beginning with a Simple Base Class

Ordinarily, C++ requires that references and pointer types match the assigned types,
but this rule is relaxed for inheritance. However, the rule relaxation is just in one direction.
You can't assign base-class objects and addresses to derived-class references and pointers:

TableTennisPlayer player ("Betsy", "Bloop", true);
RatedPlayer & rr = player; // NOT ALLOWED
RatedPlayer * pr = player; // NOT ALLOWED

Both these sets of rules make sense. For example, consider the implications of having a
base-class reference refer to a derived object. In this case, you can use the base-class refer-
ence to invoke base-class methods for the derived-class object. Because the derived class
inherits the base-class methods and data members, this causes no problems. Now consider
what would happen if you could assign a base-class object to a derived-class reference.The
derived-class reference would be able to invoke derived-class methods for the base object,
and that could cause problems. For example, applying the RatedpPlayer: :Rating()
method to a TableTennisPlayer object makes no sense because the TableTennisPlayer
object doesn’t have a rat ing member.

The fact that base-class references and pointers can refer to derived-class objects has
some interesting consequences. One is that functions defined with base-class reference or
pointer arguments can be used with either base-class or derived-class objects. For instance,
consider this function:

void Show(const TableTennisPlayer & rt)
{
using std::cout;
cout << "Name: ";
rt .Name () ;
cout << "\nTable: ";
if (rt.HasTable())
cout << "yes\n";
else
cout << "no\n'";

The formal parameter rt is a reference to a base class, so it can refer to a base-class
object or to a derived-class object. Thus, you can use show () with either a TableTennis
argument or a RatedPlayer argument:

TableTennisPlayer playerl{"Tara", "Boomdea", false);
RatedPlayer rplayerl{1140, "Mallory", "Duck", true);
Show(playerl); // works with TableTennisPlayer argument
Show(rplayerl); // works with RatedPlayer argument

A similar relationship would hold for a function with a pointer-to-base-class formal
parameter; it could be used with either the address of a base-class object or the address of
a derived-class object as an actual argument:

719

