

林资源规划设计调查35技术 SENLINZIYUAN GUIHUASHEJIDIAC

西北农林科技大学出版社

森林资源规划设计调查 3S 技术

主 编 芦维忠 副主编 张振刚 廖永峰

西北农林科技大学出版社

图书在版编目(CIP)数据

森林资源规划设计调查 3S 技术 / 芦维忠主编. 一 杨凌: 西北农林科技 大学出版社, 2011

ISBN 978 -7 -81092 -646 -1

Ⅰ. ①森… Ⅱ. ①芦… Ⅲ. ①遥感技术—应用—森林资源调查②地理 信息系统—应用—森林资源调查③全球定位系统—应用—森林资源调查 Ⅳ.①S757.2

中国版本图书馆 CIP 数据核字(2011)第060417 号

森林资源规划设计调查 3S 技术

芦维忠 主编

出版发	: 行 :西北农林科技大学出版社		
地	址:陕西杨凌杨武路3号	邮	编:712100
电	话:总编室:029-87093105	发行	F部:87093302
电子邮	3箱:press0809@163.com		
EP	刷:陕西龙源印务有限公司		
版	次:2011 年4 月第1 版		
印	次:2011年4月第1版		
开	本:787 mm×1092 mm 1/16		
EP	张:15.75		
字	数: 373 千字		

ISBN 978 - 7 - 81092 - 646 - 1

定价:26.00元 本书如有印装质量问题,请与本社联系

《森林资源规划设计调查 3S 技术》

编写人员

- 主 编 芦维忠
- 副主编 张振刚 廖永峰
- 编写人员 (按姓氏笔画排序)
 - 陈西仓 芦维忠 何彦峰 张振刚
 - 张彦林 赵子忠 廖永峰

前 言

森林资源规划设计调查(简称二类调查)是以国有林业局(场)、自然保护 区、森林公园等森林经营单位或县级行政区域为调查单位,以满足森林经营 方案、总体设计、林业区划与规划设计需要而进行的森林资源调查。其主要 任务是查清森林、林地和林木资源的种类、数量、质量与分布,客观反映调查 区域自然、社会经济条件,综合分析与评价森林资源与经营管理现状,提出对 森林资源培育、保护与利用的意见。调查成果是建立和更新森林资源档案, 制定森林采伐限额,进行林业工程规划设计和森林资源管理的基础,也是区 域国民经济发展规划和林业发展规划,实行森林生态效益补偿和森林资源资 产化管理,指导和规范森林科学经营的重要依据。

传统的二类调查以地面调查为主,具有工作时间长、劳动强度大的弊端。 近年来,随着航天遥感、地理信息系统和全球定位系统为代表的空间信息技术的发展,3S技术已广泛应用于林业资源监测、灾害预警、规划设计、辅助决 策等领域,在二类调查方面已实现了快速、准确、节省人力和节约费用,并通 过森林资源管理信息系统有效组织、处理和管理空间数据和属性数据,实现 了森林资源信息管理自动化。

《森林资源规划设计调查3S技术》是在国家高等职业院校示范性建设项目的资助下,从行业职业技能培训需要出发,以培养一线高技能技术人员为目标,供高职学院林业及相关专业使用的实训教材。全书共分十个单元,系统介绍了从事二类调查技术人员需要掌握的知识和技术,并有实训操作的技术标准和案例。本书知识和技能并重,操作性强,也可作为广大林业资源监测技术人员二类调查技术的培训教材。

编者 2010年10月

试读结束,需要全本PDF请购买 www.ertongbook.com

目 录

昏	有一单元	遥感影像预处理技术	(1)
	第一节	· 遥感影像的几何校正 ······	(1)
	第二节	5 遥感影像的裁剪	(6)
	第三节	5 遥感影像的融合	(15)
	第四节	5 遥感影像的镶嵌	(21)
昏	有二单元	ArcViewGIS 应用技术 ······	(27)
	第一节	5 文件添加	(27)
	第二节	5 图班区划	(30)
	第三节	· 属性表管理 ·····	(33)
	第四节	5 制图	(42)
	第五节	前 辅助功能	(49)
5	第三单元	ArcGIS 矢量数据的编辑和拓扑处理技术	(56)
	第一节	· 地形图校正 ·····	(56)
	第二节	5 图形编辑	(60)
	第三节	· 空间要素的拓扑创建 ······	(74)
	第四节	· 小班拓扑处理流程 ······	(79)
在 5	第四单元	掌上电子地图数据转换	(90)
	第一节	· 工程和影像栽剪 ······	(91)
	第二节	5 专题组织	(93)
	第三节	7 资源调查	(97)
5	第五单元	掌上森林调查仪 PDA 操作	(]	102	!)
	第一节	7 文件	(1	102	!)
	第二节	7 地图	(1	108	;)
	第三节	「属性	(1	109))
	第四节	下 导航	(1	113	;)
	第五节	7 调查	(]	115	;)
5	 有六单元	技术标准	(]	123	;)
	第一节	5 土地类型(地类)	(]	123	;)
	第二节	7 森林分类	(]	128	;)
	第三节	7 林种划分	(]	132	2)
	第四节	5 树种(组)、优势树种(组)与树种组成	(1	136	;)

第五	节 龄级、龄组、生长期、竹度	(139)
第六	节 立地因子	(141)
第七	;节 土地退化	(145)
第八	节 湿地类型	(148)
第九	.节 其它标准	(151)
第七单元	. 经营区划	(159)
第一	·节 区划原则和区划条件 ·····	(159)
第二	节 小班勾绘方法	(161)
第八单元	调查方法	(167)
第一	节 小班判读与划分	(167)
第二	节 小班调查方法	(168)
第三	节 小班因子调查与记载	(172)
第四	1节 调查总体蓄积量控制	(178)
第五	节 多资源专项调查和调查重点	(180)
第九单元	调查数据统计	(182)
第一	·节 基本设置	(182)
第二	节 基本操作	(185)
第三	节 调查数据检查	(188)
第十单元	内业统计计算与成果编制	(197)
第一	·节 调查成果	(197)
第二	节 面积量算	(198)
第三	节 森林资源统计	(198)
第四	1节 成果图制作	(199)
第五	节 调查报告编制	(212)
附录一	森林资源规划设计调查工作流程图	(214)
附录二	几个需要注意的技术标准	(215)
附录三	质量检查表式样	(216)
附录四	森林资源统计表式样	(217)
附录五	调查卡片式样	(238)

第一单元 遥感影像预处理

第一节 遥感影像的几何校正

一、准备工作

打开有重叠部分的两个影像,显示在波段列表中,如图1-1所示。

📲 Available Band.	.
File Options	
+ <dpwleft.raw> [6] {*} + <dpwright.raw> [6]</dpwright.raw></dpwleft.raw>	
🖲 Gray Scale 🔿 RGB	Color
Selected Ba	nd
Band 1:dpwleft.raw	
Dims 1000 x 1000 (Byte)) [BSQ]

图 1-1 波段显示列表对话框

列在"AVailable Band List"中的影像,必须显示出来,才能进行下面的操作。

二、选择 GCP(Ground Control Points,地面控制点)

菜单位置: MAP→Registration, 如图 1-2 所示。

图1-2 影像配准命令列表

Image to Image:影像对影像的配准,可以是具有重叠区域的任何类型影像(如同时间的 TM 影像,MSS/TM 和 SPOT 影像等)。

Image to Map:选择影像不祘能能地理图件坐标的控制点。需要打开一个待纠正的影像。地理图件可以是纸上的地图或者矢量文件,栅格文件,纸上的地图需要量测地理坐标。

三、选择"Select GCPs: Image to Image"

如果没有打开两个影像,则系统弹出如图1-3所示对话框,提示必须打开两个影像。

图 1-3 错误提示对话框

四、如果打开两个影像,系统弹出对话框,如图1-4所示

图 1-4 基准影像和配准影像选择对话框

Base Image:参考影像,这个影像不变。

Warp Image:要纠正的影像转换到参考影像坐标系中去。

Selected Item:显示你选中的要纠正的影像。

Selected Item:显示你选择的用于参考的影像。

五、点击"OK"以后弹出选择控制点的对话框"Ground Control Points Seletion",如图 1-5 所示

🖬 Ground Control Points Sele 🔳 🗖 🗙
File Options Help
Base X 201.00 ♀ Y 1845.00 ♀ Degree 1 ♀
Warp X 5418.00 ♀ Y 4036.00 ♀
Add Point Number of Selected Points: 0 Predict
Show List RMS Error: N/A

图 1-5 地面控制点选择对话框

Base/warp:使用鼠标在两个影像的窗口(SCROOL,IMAGE 或者 ZOOM)中点击左键, 系统自动将鼠标位置的图象坐标值填写到编辑框内。理论上在 SCROLL,IMAGE 或者 ZOOM 选择都行,但为了保证精度,建议在 ZOOM 窗口中选择,可以精确到一个像素内。

Degree:多项式的次数,决定控制点的最少个数,1次需要4个,2次需要9个,3次需要16个。如果当前控制点的个数不足相应次数要求的最少个数,则不能激活这个控制。

Add Point:将现在选择的控制点增添到控制点列表中。

Number of selected Points:显示当前控制点的个数。

Predict:根据现有的控制点预测给定 Base X、Base Y 的 WarpX、WarpY,如果当前控制 点的个数不足相应次数要求的最少个数,则不能激活这个控制。

Show List:打开或者关闭控制点的列表。

RMS Error:显示平均的均方根误差,一般而言,平原地区要求小于0.5,山区小于1, 取决于用户的要求。

1. "Ground Control Points Selection"对话框的"File"菜单里有三个命令,分别是:

Save GCPs to ASCII: 将当前控制点保存为一个文本文件,文件的后缀名一般为*.pts。 Save Coeeficients to ASCII: 将利用当前控制点解算的多项式系数保存为一个文本文件,后缀名一般为*.txt。

Restore GCPs from File:从已知的文件读入控制点,由于纠正后的影像要占用硬盘空间,如果用户的计算机硬盘空间有限,可以只保存控制点文件,待需要的时候再运行一遍。

3

2. "Ground Control Points Selection"对话框的"Options"菜单里的命令解释如图 1-6 所示。

图 1-6 地面控制点选择对话框 中的"Option"命令列表

Warp Displayed Band:利用当前的控制点纠正当前显示的波段(1个或者3个)。

Warp File:利用当前的控制点纠正一个文件,选择该项以后用户还可以再选择空间 区域和波段个数。

Reverse Base/Warp:交换参考影像和待纠正影像。

Auto Predit/Auto Predict:打开或者关闭自动预测,打开自动预测时,只要选定了参考 图象上的不祘不祘点,系统自动预测该点在进行图象上的对应点,用户可以再对此点进 行调整。是否在图象上标控制点。

Order Points by Index:根据控制点的顺序排列。

Order Points by Error:根据控制点的均方根误差排列。

Clear All Points:清除所有的控制点设置。

Set Point Colors: 控制点显示的颜色。

3. 控制点列表对话框如图 1-7 所示。

试读结束,需要全本PDF请购买 www.ertongbook.com

🗐 Inaş	e to Ima	age GCP I	.ist						_ 0	X
File Op	otions									
	Base X	Base Y	Warp X	Warp Y	Predict X	Predict Y	Error X	Error Y	RMS	
#1+	5977.50	4470.75	462.75	3072.50	462.4045	3073.2987	-0.3455	0.7987	0.8702	~
#2+	6010.25	4488.25	496.75	3101.25	497.2162	3101.1557	0.4662	-0.0943	0.4756	
#3+	5977.00	4470.25	462.00	3072.50	461.9237	3072.5983	-0.0763	0.0983	0.1244	
#4+	5893.00	4565.50	342.75	3166.50	342.0875	3166.7320	-0.6625	0.2320	0.7019	
#5+	6002.75	4631.0000	457.50	3268.00	457.2524	3268.1846	-0.2476	0.1846	0.3088	
#6+	5957.50	4484.75	435.25	3086.25	435. 7639	3085.4569	0.5139	-0.7931	0.9450	
#7+	5799.75	4695.25	203. 75	3299.75	203.8208	3299.6031	0.0708	-0.1469	0.1631	
#8+	6132.00	4586.75	619.50	3244.25	619.3407	3244.2315	-0.1593	-0.0185	0.1604	
#9+	6113.25	4398.00	638.50	3017.25	638.3718	3017.0949	-0.1282	-0.1551	0.2012	
#10+	5977.25	4612.00	430.75	3240.25	431.3186	3240.1445	0.5686	-0.1055	0.5783	
										~
	<								>	/83
Goto On/Off Delete Update Hide List										

图1-7 控制点列表对话框

GoTo:按下该按钮后,系统自动将影像滚动,以便显示出当前前选择的控制点。

On/Off:关闭或者打开控制点,执行这个操作后,系统自动更新,用剩余的控制点解 算多项式系数,并自动显示均方根误差。用户可以使用这个功能选择最佳的控制点,以 便使均方根误差最小。

Delete:删除当前选中的控制点。

Update:强制系统利用控制点解算多项式系数,并自动显示均方根误差。由于在列表 中使用鼠标双击可以进行控制点的编辑,所以编辑完成以后使用这个命令以便反映 变化。

六、选择 Warp Displayed Band 或者 Warp File 以后,系统弹出"几何纠正的参数设置"对话框,如图 1-8 所示

🗊 Registration Parameters 🛛 🗙				
Warp Method Polynomial Degree				
Resampling Nearest Neighbor				
Background 0.000				
Registration Output Image:				
Upper Left Corner : (9990,2591) Image Size (Pixels): 969 x 988				
Change Output Parameters				
Output Result to 🐨 File 🦵 Memory Enter Output Filename <u>Choose</u>				

a 图

🖲 Output Image Param 🗙
Output Inage Size
Upper Left Corner (XO)
Upper Left Corner (YO)
Number of Samples ⁹⁶⁹
Number of Lines 988
OK Cancel

b 图

图 1-8 几何纠正参数设置对话框

5

Polynomial:纠正的方法选择,有多项式,三角形和RST(旋转放缩变换)。

Degree: 多项式的次数, 一般使用1次或者2次, 很少使用3次。

Nearest Neighbor: 灰度重采样的方法, 有三种, 最近邻法, 双线性内插法, 和三次卷积法。

Backgroud:背景值的设置,由于纠正的后的影像有可能周围有空白,背景值为0,表示空白处为黑色,背景值为255,空白处为白色。

Change Outpur Parameters:设置输出影像的参数,详见 b 图。设置输出影像的起始点 坐标,缺省下为(1,1)设置输出影像的重视高度。用户可根据需要设置,可以采用 X 和 Y 方向上不同分辨率的像元。

OK:按下 a 图中的"OK"后进行几何纠正,纠正后的影像自动加在"Available Bands List"中,几何纠正的时间开销取决于影像上要纠正部分的大小,要纠正的波段数,选择的 重采样方法和多项式次数等。

第二节 遥感影像的裁剪

一、通过矢量文件进行影像数据裁剪

1. 选择主菜单中的"Basic Tools"→"Masking"→"Build Mask"菜单,如图1-9所示, 建立 Mask。

图1-9 建立掩膜命令列表

2. 在弹出的 Mask Definition 窗口中选择要裁剪的窗口,如图 1-10 所示,可选择 Display #1,或根据需要做出选择。

🎒 Mask Definition 🗴
Select Input Display:
Display #1 No Display
OK Cancel

图 1-10 选择输入建立掩膜影像文件对话框

3. 在弹出的#1Mask Definition 窗口中,点击"Option"菜单,选择依据何种原料建立 Mask。可以选择的选项有波段数据的值域、注记文件。ROI、ROI 的交叉区域、EVF(ENVI 默认矢量文件格式)和界面显示中的注记。此处以 EVF 文件为例,如果想用其他形式建 立 Mask,需要首先建立感兴趣区、注记等。EVF 文件的获取,是在打开每种矢量格式的时 候,ENVI 会提示将这种矢量格式写成 EVF 文件,就可自动获取了。

【注意】 当使用 EVF 文件建立 Mask 的时候,需要首先在建立 Mask 的窗口中,使用 Overlay 功能覆盖上需要的 EVF 文件,如图 1-11 所示。

ŧ 1 #	1 Mask Definition	_ 🗆 🗵
File	Options	,
Samı Sel	Import Band Data Range Import Annotation Import ROIs Import ROI Intersection Import EVEs	
	Import Displayed Annotation Mask Finite Values Mask "NaN"/"Inf" Values	
Out	 Selected Areas On Selected Attributes [Logical OR] Selected Attributes [Logical AND] er Uutput Filename Choose [] Co 	mpress
	ply Cancel	

图 1-11 选择输入建立掩膜的矢量数据源

4. 在弹出的 Mask Definition Input EVFs 中,选择要用来建立 Mask 的矢量,如图 1-12 所示,点击"OK"。

Mask Definition Input E¥Fs	x
Select EVFs for Mask Definition	
vector	٦
Number of items selected: 0	
Select All Items Clear All Items	
OK Cancel	

图 1-12 选择建立掩膜的 EVFs 矢量文件对话框

5. 回到 Mask Definiton 界面,选择 Mask 要输出的位置(输出为文件或内存)。点击 "Apply", Available Band List 窗口就出现了 Mask 的波段,如图 1-13 所示。

🗐 #1 Mask Definition 📃 🗆 🗙
File Options
Samples 512 Lines 512
Selected Attributes for Mask:
EVF: vector
Delete Item Clear All Items
Output Result to 👁 File 🔿 Memory
Enter Output Filename Choose Compress
Apply Cancel

图 1-13 保存输出掩膜文件选择对话框

6. 选择主菜单中的"Basic Tools"→"Masking"→"Apply Mask"菜单,如图1-14 所示, 应用 Mask。

🗐 ENVI							
File	Basic Tools	Classification	Transform	Filter	Spectra		
	Resize Da Subset Da Rotate/Fl Layer Sta	ata (Spatial/Spe ata via ROIs ip Data icking	ctral)				
	Convert Data (BSQ, BIL, BIP) Stretch Data						
	Statistics Change D Measuren	etection nent Tool) }				
	Band Mat Spectral M	h Math					
	Segmenta	ation Image					
	Region O Mosaickin	f Interest 9	*				
	Masking		Þ	Build M	ask		
	Preproces	ssing	÷	Apply N	Mask		

图 1-14 应用掩膜文件命令列表

7. 在弹出的 Apply Mask Input File 窗口设置参数。首先在"Select Input File"栏中选择要裁剪的影像,之后点击"Select Mask Band"选择刚才建立的 Mask,再点击"OK"就可完成裁剪,如图1-15 所示。

🖞 Apply Mask Input File						
Select Input File: [[Memory2] (512x512x1) Bhtmref.imz	File Information: File: D:\RSI\IDL60\products\envi40\data\t Dims: 512 x 512 x 6 [BSQ] Size: Byte1], 572, 864 bytes. File Type : ENVI Standard Sensor Type: Landsat TM Byte Order : Host (Intel) Frojection : UTM, Zone 13 North Fixel : 28.5 Meters Datum : North America 1927 Wavelength : 0.485 to 2.215 Micrometers Upper Left Corner: 1, 1 Description: Bighorn Dasin, Landsat TM, Calibrated to Reflectance					
Spatial Subset Full Scene	Select By File 11					
Select Mask Band None Selected>	Build Mask Clear Mask					

图 1-15 应用掩膜输入文件选择对话框

【注意】 如果想保留 Mask 之外的部分,需要在定义 Mask 的环节中在 Mask Definition 窗口中的"Opiton"菜单中选择 Selected Areas "Off"选项,如图 1-16 所示,其他过程 不变。

<u>#</u> #	1 Mask Definition	
File	Options	
Samt	Import Band Data Range	
	Import Annotation	
Sel	Import ROIs	
EVF	Import ROI Intersection	
	Import EVFs	
	Import Displayed Annotation	
	Mask Finite Values	
	Mask "NaN"/"Inf" Values	
- De	 Selected Areas "Off" 	
	Selected Areas "On"	
Out	 Selected Attributes [Logical OR] 	
	Selected Attributes [Logical AND]	
		'
	1 [2]	
Ap	ply Lancel	

图 1-16 掩膜之外信息保留开关选项命令

二、利用感兴趣区域(ROI)对影像进行掩膜

1. 准备好感兴趣区域和待掩膜的影像 ENVI 不支持将线状的矢量转换为面状的掩膜,线状矢量转换为只能成线状的 ROI,面状的矢量可以直接转换为面状 ROI。要对影像的一个区域掩膜,矢量需要面文件。确保影像与矢量能够叠加,如果不能叠加,需要将影像与矢量进行配准。

2. 将矢量数据转换为 ROI:

(1)使用"Vector"→"Open Vector"打开矢量数据。

(2) 在 Vector 显示窗口中的文件菜单下选择"Export Active Layer to ROIs", 如图 1-17所示。

战读结束,需要全本PDF请购买 www.ertongbook.com