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Preface

This modest tract offers a little light reading on a heavy subject. In six
short and relatively independent chapters, we provide motivated discussion
on a few topics in number theory that are tremendously active and rapidly
progressing today.

Both the content and style of this book had their origin in invited talks
we gave in the last few years, in China, Turkey, and the United States.
Our audiences consisted in mathematicians and graduate students whose
backgrounds were rather diverse. Although all were interested in the topics
in general, many were not experts in the field. It was natural, therefore,
that we endeavored to give motivation on each main topic before delving into
deeper material. Also, we attempted to keep the lectures as independent
from one another as possible, and to make at least part of each lecture
comprehensible to the entire audience. Finally, in order not to have the main
ideas eclipsed by the subordinate (but often heavily technical) material, as
a rule we omitted detailed proofs. Of course, we should point out that the
lectures do form an integral whole as well: they evolve around the moment
conjecture for L-functions and the period conjectures of Shimura.

When the invitation to provide a written account of these lectures came,
we at first felt the temptation of generating a fuller and more coherent work.
Upon further consideration, however, we have decided against this idea. To
undertake such a project would require a vast amount of time and energy,
and we are not certain that we can afford to do so at the present time. On
the other hand, we also believe that a motivated—and as nontechnical as
possible—introduction of the main topics can be useful, since it can help
bridge the gap between the basics and certain specialized research areas, and
perhaps also to serve as a road map for relevant literature. Consequently,
what the reader now has in hand is an extended version of the original
talks: revised, somewhat fleshed out, but otherwise retaining most of the
characteristics of the original lectures themselves. Although this work is by
no means complete or comprehensive, it is our hope that, through this, the
reader can gain an overall appreciation for the main topics and conjectures
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considered herein. In the meantime, to the reader who intends to study
these topics in depth, we hope that we have offered a motivated guide to
the literature.

A rough idea for the content and organization of this book can easily be
gained by glancing at the table of content, and we shall therefore not elab-
orate too much here. During the preparation for our lectures as well as for
this manuscript, we have benefited from many existing resources in the liter-
ature. For the more introductory parts (which form the early parts of most
of the chapters), we wish to mention especially Goro Shimura’s Introduction
to the Arithmetic Theory of Automorphic Functions, Danie L. Bump’s Au-
tomorphic Forms and Representations, and Henryk Iwaniec and Emmanuel
Kowalski’s Analytic Number Theory. In several places, the arrangement of
concepts and the choice of certain examples have been influenced by these
excellent books. It is impossible to acknowledge in detail the numerous
works we have consulted for the rest of the book, and the reader must be
referred to the Bibliography. Some work by the authors themselves on the
conjectures have been briefly (and incompletely) summarized here as well,
mainly in the two final chapters.

"It remains our most pleasant duty to acknowledge the many people from
whom we have received much help and support, mathematically and other-
wise. First and foremost, we thank Professor Goro Shimura and Professor
Dorian Goldfeld, our thesis advisors. We are grateful to Professor Shou-Wu
Zhang of Columbia University, Professor Hongwen Lu of Tongji University,
Professor K. Ilhan Tkeda of Istanbul Bilgi University, Professor Juping Wang
of Fudan University, and Professor Tianze Wang of Henan University for
their kind invitations and their steadfast support. We are much indebted
to Professor Paula Cohen Tretkoff of Texas A&M University and Profes-
sor Yingchun Cai of Tongji University for their encouragement and advice.
With gratitude we acknowledge the kindly and efficient assistance from the
editors, Liping Wang and Lisa Libin Fan. Finally, we give our heartfelt
thanks to all members of our families, and especially to our wives, Susan
Staples and Jing Tian, for their longsuffering and their love.

Ze-Li Dou and Qiao Zhang
Fort Worth, TX, USA
October 11, 2011
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Chapter 1

Modular forms and the

Shimura-Taniyama Conjecture

The concept of modular form are based on very natural considerations. In
this chapter we recount some rudiments of the theory of modular forms
without assuming any previous knowledge of the subject on the reader’s
part. The number theoretic interest of the subject becomes apparent when
we describe the Hecke operators on the spaces of modular forms and the
L-functions attached to eigenforms. The connection between elliptic curves
and modular forms of weight 2 is briefly described towards the end in or-
der to state the celebrated Shimura—Taniyama Conjecture, which is now a
theorem of A. Wiles, et al. See [Wi95] and related articles.

The standard reference for the foundational material of this subject is the
book Intreduction to the Arithmetic Theory of Automorphic Functions by
G. Shimura [Sh71]. Other excellent textbooks and references are also read-
ily available; as a somewhat random sampling we mention [Bo97], [Bu97],
[Ge75], [Gu62], [Iw02], [Kn92|, [Mi89], and [Se73].

1.1 Elliptic functions

We begin with a lattice on the complex plane, C. Let w; and ws be two
nonzero complex numbers that are linearly independent over R. In other
words, we suppose that the points 0, w;, and w» do not lie on a straight line.
Then the set of all linear combinations of w; and w, with integer coeflicients

is a lattice

L = L(wy,ws) = {mw) + nws : m,n € Z}. (1.1)

We seek to construct functions which are doubly periodic with respect
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to L, that is, functions f such that
f(z+w)= f(z), YweL. (1.2)

According to Liouville’s Theorem, every bounded entire function must be
constant, hence non-constant doubly periodic functions cannot be holomor-
phic everywhere. We therefore seek meromorphic functions with that prop-
erty.

Definition 1.1.1  An elliptic function with respect to a lattice L is a
meromorphic function f such that (1.2) holds.

The simplest non-constant elliptic function is the Weierstrass p-function,

defined by
1
p(z) = —+ > ( - -—2). (1.3)
wet (0} (z+w)? w

This function is absolutely convergent except when z € L, where it has a
double pole.
The derivative of p is another elliptic function:

——22 R (1.4)

This time we have triple poles at lattice points.
Though linearly independent, the Weierstrass functions p and g’ are
algebraically related. We can see this by comparing their Laurent series.

Let us introduce a notation, Gag:

1
Gor(L) = Z o V2< ke (1.5)

welL—{0}

Then it can be checked that we have

p(z) = — + Z2k(2k +1)Caky2(L) 22k (1.6)
k=1
and -
§() = = + 32k + Daera (D)2 (1.7)
k=1

It follows from these equations that p and g’ satisfy the relation

(p')? = 4p® — 60G4(L)p — 140Gs(L). (1.8)
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To see that this identity holds, one needs only write out the respective terms
in (1.8) for the first few terms, and check that

(9')? — 4> + 60G4(L)p = 140G¢(L) + higher-order terms.

But the right-hand side no longer has a pole, while the left-hand side is
clearly doubly periodic. From this we deduce that the assertion is true.

It is standard to write
g2 = 6094 and g3z = 14096. (19)

Then (1.8) assumes the simpler form

(9')? = 4p° — gap — gs. (1.10)

Given L, the elliptic functions with respect to L form a field. Because
of the relation (1.8), one can prove by using the Riemann-Roch Theorem
that this field is precisely C(p, ).

1.2 Modular forms

If a lattice L is fixed, then the relation between p and g’ is precisely known,
once G4(L) and Gg(L) have been evaluated. We may naturally ask how the
relation changes when one varies L. We pose the question more generally

as follows.

Question Given k > 2, what is the behavior of G as a function of the
lattice L7
It is obvious from the definition of Gox that we have

Gar(2L) = 272%Gyi (L). (1.11)

Thus there is some rigidity regarding the re-scaling of the lattice. This
makes it possible for us to interpret the behavior of Gox (L) via a function
of one complex variable. Note that
L(wl,wz) =(.<.)2L(ﬂ,l). (1.12)
w2
Without loss of generality, we may assume that

% e H % the upper-half plane = {z € C: Im(z) > 0}. (1.13)
2
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Then we define
sz(z) = gzk(L(Z, 1)) (1.14)

In general, therefore, if L = Zw; + Zwy, and z = w1 /we € H, then
Gok(L) = w3 **Gax(2). (1.15)

There are further invariance properties. The function Gok, being a func-
tion of the lattice L, is clearly invariant under different choices of bases.
However, when the generators of L, w; and ws, are chosen differently, the
quotient 2 = wy /w2 does vary. For example, the vectors w; +wsy and w; also
generate L. Thus we must have Gax(2) = Gar(z + 1).

In general, suppose

a= (‘; g) € SLy(Z). (1.16)

Then the lattice L(z,1), generated by 2 € H and 1, is also generated by
z\ _fa b\ {z\ _(az+b
V1) T \e d/\1) T \ez+d)"

L(2,1) = L(az + b,cz + d). (1.17)

Thus

Recall the standard notation for linear fractional transformations: if
_az+b

a b
a= (c d),then
az= cz+d

It is easy to check that, if @ € SLy(Z), then o maps H onto itself.
Let us rewrite (1.17) in terms of Goi. By (1.15), we have

Gox(L(z,1)) = Gax(2), Gar(L{az +b,cz + d)) = (cz + d)"2*Gax(az).

Therefore
Gar(az) = (cz + d)* G2 (2). (1.18)

This is the main defining property for modular forms.

Definition 1.2.1 A modular form of (even) weight k with respect to
SL2(Z) is a holomorphic function f : H — C such that
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(1) faz) = (cz +d)*f(z), VYa= (Z Z) € SLy(Z);

(2) f is “holomorphic at co,” that is, f has a Fourier ezpansion of the

00
— § :ane2mnz'

n=0

form

(In other words, there are no negative indices.)

We call SL3(Z) the full modular group. Its subgroups of finite index are
called modular groups.
Note that

((1) i) € SLy(Z) and (_01 _Ol)eSLg(Z).

The first matrix yields the identity f(z+1) = f(z), which has already been
observed, and guarantees a Fourier expansion for the modular form. Thus
condition (2) of the definition can be stated in the way we have done. The
fact that the second matrix belongs to SL2(Z) implies that a modular form
for the full modular group cannot have odd weight, unless it is (. For this
reason only even weights have been mentioned in the definition.
It is convenient to introduce the notation
q= e2niz‘
With the ¢ notation, the Fourier expansion of a modular form f acquires a

o0

rn

= E anq .
n=0

neater looking form

1.3 Examples

It is not surprising that the functions Gax(z) for £ > 2 all turn out to be
modular forms. They are called Fisenstein series. The weight of Gox(z) is
2k. In fact the following identity is true:

k o0
Gan(z) = 20(k) 2(2’“2 Za% L(n)g™. (1.19)

Here ( is the Riemann zeta function, and the symbol o, is defined by

=) d™

d|n
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In general, if f and g are two modular forms of weight k and a,b € C are
arbitrary constants, then the linear combination a f + bg is another modular
form of weight k. It follows that the set of all modular forms of a given
weight k is a vector space. We denote this space by M.

It is also easy to verify that, if f and g are modular forms of weights k
and £, respectively, then their product fg is a modular form of weight k 4 £.
(Heuristically, therefore, we may expect f/g to be a modular form of weight
k — £ if k > £. This is of course not precisely true, but it provides a helpful
perspective nevertheless.)

Definition 1.3.1 A modular form f that “vanishes at oo,” that is, a form

f(z) = Z ang"
n=1

with Fourier expansion

is called a cusp form.

Clearly, linear combinations of cusp forms are again cusp forms. Thus
the set of all weight k cusp forms also form a vector space. It is denoted by
Sk.

From (1.19) we see that none of the Eisenstein series is a cusp form.
However, it is quite easy to manufacture one, since we could simply take
two modular forms (say Eisenstein series), match up their weights, and then
cancel out the leading coefficient.

More concretely, we define
A = g3 —27¢2. (1.20)
Since g; has weight 4 and g3 has weight 6, A is a modular form of weight 12.

A closer look discovers the fact that the constant term for A is 0. Therefore

A is a cusp form.

Definition 1.3.2 A meromorphic function f : H — C such that
flaz) = f(z), Va € SLy(Z)

is called a modular function.

Thus a modular function is a “modular form of weight 0”. However, we
have to sacrifice holomorphicity.

The cusp form A never assumes the value 0. This allows us to define
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A
This j- function is a modular function. (Heuristically, 12 — 12 = 0.) More
precisely, one can show that j(z) has a Fourier expansion with integer coef-
ficients. Therefore, if we view j as a function defined on the quotient space
SLo(Z)\H*, where H* = HU {o0c}, then it has just one simple pole, located
at oo.

We note that, in general, the definiton of H* depends on the group in
question. That is, given a Fuchsian group I', H* is the union of H with the
set of cusps of I'. This will be relevant later.

Although the examples we have given so far suffice to illustrate the
definitions of modular forms, cusp forms and modular functions, we may
legitimately ask whether or not they also serve as typical or representative
examples of these concepts. The surprising answer is that they are quite
adequate for the construction of all modular forms and modular functions
on the full modular group.

Since H* = H U {oc} has genus 0 and j has just a simple pole, the
Riemann-Roch Theorem implies that the field of modular functions is C(j).
Thus j suffices for the characterization of modular functions.

The Riemann-Roch Theorem also allows us to conclude that dim(M3y) =
0, dim(Sx) = 0 for k = 2,4,6,8, and 10, and

Sk =A- My_13. (1.21)

On the other hand, given f € M, for an even k > 4, there clearly exists
a constant ¢ € C such that f — eGy € Si. So

M. =CGy,®S;, Vevenk >4 (1.22)

These facts suffice to describe all modular forms with respect to the full
modular group SLy(Z). To illustrate this with a simple example, let us
compute the dimension of Myg. By (1.22), we have Mag = C - Gag & Sos.
But Sas = A- Mg by (1.21). This shows that dim(Mag) = 1+ dim(M ).
A similar analysis of Mg leads to the conclusion dim(Mg) = 1+dim(My).
But M, = C- G4, which is of dimension 1. Thus dim(Mgg) = 1+1+1 = 3.

By induction, the above discussion shows that every element of M is
generated algebraically by the three forms G4, G, and A. In fact, by (1.20),
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even A can be dispensed with! General formulas for the dimensions of My,
and Sk can be easily derived from (1.21) and (1.22), and can be found in

almost all textbooks. We therefore omit them in the interest of space.

1.4 Hecke operators and eigenforms

Thus far we have treated modular forms as analytic objects. As such they
arise from very natural considerations. Their number theoretic interest,
however, becomes immediately apparent when we consider the Hecke oper-
ators. We shall restrict ourselves to cusp forms in this section.

The Hecke operators are linear operators on the vector spaces S, which
can be made into a Hilbert space by the introduction of an inner product,
called the Petersson inner product. Given f,g € Sk, it is defined by

B —— dzdy
(fg) = fs R Cro

We omit the verification of convergence here.

There is a Hecke operator for every positive integer 1 < m € Z; it is de-
noted by T'(m). We take the utilitarian approach of immediately exhibiting

some of their basic properties.
(1) The Hecke operators are commutative. That is,
T(m)T(n) =T(n)T(m), V1< mneZ (1.23)
Here T(m)T(n) means the composition of the two operators.

(2) The Hecke operators are multiplicative. More precisely, we have the

following two formulas:
T(m)T'(n) =T(mn), if (m,n)=1, and (1.24)
T ™) = T(p)T(p") —p* 1T (™1, if pis prime. (1.25)

(3) The Hecke operators are self-adjoint with respect to the Petersson

inner product. Thus

(fIT(m),9) = {f,9IT(m)), (1.26)

where f|T'(m) denotes the image of f under T'(m).



