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Preface

During the past decade, molecular and cellular biophysics has emerged as one
of the most active and exciting areas at the frontier of scientific research. It is
a multi-disciplinary field that has many important applications in medicine,
health care, life science and biology in general. In essence, the origins of many
diseases and illness are rooted at the cellular level. Like molecular and cellular
biology, molecular and cellular biophysics is also an indispensable part of the
very foundation of contemporary medical and life sciences. In fact, cellular
biophysics not only provides a theoretical foundation toward understanding
biological processes such as the function of organs, tissues and their interac-
tions, but also provides practical answers to medical treatment and pathology
including molecular mechanism of diseases and infections. Because of rapid
development of nano-science and nano-technologies, molecular and cellular
biophysics not only offers a practical means but also the promise to treat
and cure many diseases with which we as a human society are still strug-
gling with. However, unlike molecular cellular biology, molecular and cellular
biophysics, in particular molecular and cellular biomechanics, is still a field
at its infancy. It is precisely because of this that makes cellular mechanics a
promising and exciting research field to study and to work.

In this book, we have selected nine research works at the forefront of
molecular and cellular biomechanics to be introduced to our readers. It is our
opinion that these works represent the current trend and future directions
of cellular biomechanics research. By compiling these different topics into
one volume, a unique perspective is provided on the current state of cell
mechanics research and what lies in the future.

Among these contributions, Romero and Arribas presented their ground-
breaking work on three-dimensional cell model, cell growth dynamics algo-
rithm, and associated large-scale finite element simulation through Chapter
1. In Chapter 2, Zeng, Li, and Kohles presented their work on multiscale
simulations of soft contact and adhesion of stem cells. In this work, a soft
matter model has been developed to model the mechanical mechanism of the
mechanotransduction of stem cells. Focusing on molecular mechanics and ge-
netic mechanism of cellular biology, Wu, Wang, and Cohen presented their
molecular dynamics modeling of proteins in Chapter 3. More specifically, they
employed a molecular dynamics and principal component analysis (MD-PCA)
approach studying sickled hemoglobin-hemoglobin interaction, which is the
main cause of sickle cell anemia. In Chapter 4, Qin, Chou, Kreplak, and
Buehler presented their latest work on atomistic and coarse-grain modeling
and simulations of cellular intermediate filaments. They not only presented
their own work, but also provided a detailed tutorial on modeling and sim-
ulations of intermediate filament networks. Complementary to Qin et al’s
work, in Chapter 5, Hatami-Marbini and Mofrad give a tutorial overview of
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cytoskeletal mechanics and rheology, and the topics that they have touched
on are from mechanics of intermediate filament, rheology of cytoskeleton
network, experimental measurements and techniques, to computation and
simulation approach. To capture the complexity of cell’s constitutive behav-
iors, in Chapter 6, Vernerey presented a multiphase mixture cell model and
its application to cell-substrate interactions. In the proposed multiphase cell
model, it combines the continuum description of the stress fiber, mass trans-
port, cytosol fluid motion, and G-actin monomer motion, etc. Not only does
the multiphysics model couple and combine several different aspects of cell
biology, but the author has also applied the latest extended finite element
method (X-FEM) and level-set method to simulate cell contact and adhe-
sion with an extracellular substrate. This has demonstrated how applied and
computational mechanics can solve complex problems in cell mechanics. To
investigate mechanotransduction of cells through a purely thermodynamic
approach, Sarvestani presented his analytical cell adhesion model in Chapter
7 that takes into account the effects of substrate stiffness and how it affects
the growth of nascent adhesion areas. In Chapter 8, Kohles provided a de-
tailed account on the experimental biomechanics of a single cell, in which he
has discussed a state-of-the-art opto-hydrodynamics technique for measuring
isolated cellular mechanical properties. Finally, in Chapter 9, Shen discussed
his nonlocal shell model to simulate the buckling of microtubules inside a
cell. This is a good example that clearly shows how non-classical continuum
mechanics can contribute to the understanding of cellular biology.

Finally, it is our hope that this volume will disseminate much useful in-
formation in cellular biomechanics to a larger community outside the area of
applied mechanics, while arousing public interest in cell mechanics research
and applications. Ultimately, we envision that these works would promote
more in-depth study and research in cell mechanics and cellular biophysics.

Shaofan Li and Bohua Sun
February 4, 2011
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Chapter 1 Modeling and Simulations of the Dy-
namics of Growing Cell Clusters

Ignacio Romero* and Juan J. Arribas

Technical University of Madrid

Abstract: A phenomenological discrete model for the dynamics of grow-
ing cell clusters is presented. Each cell is modeled as a growing deformable
solid which can interact mechanically with its neighbors by means of adhe-
sion and repulsion forces. By defining simple behavior rules based on the
age and the mechanical state of the cells, simple cluster dynamics can be
reproduced. The framework is far from complete, but describes the essential
features required for more complete mechanical simulations of cell ensembles.

Keywords: cell mechanics, finite elements, population dynamics, cellular
automata

1.1 Introduction

The study of cell cluster dynamics is fundamental for understanding biologi-
cal phenomena such as embryology, tissue repair, and most importantly, solid
tumors. Up to now, biochemistry has been the main discipline employed to
study such processes, with undeniable success. There is, however, growing
awareness that mechanics also plays a crucial role in these dynamical pro-
cesses and new avenues to research and analysis are now opened.

Since the classical work of Youngl!! and later Eaves(?, the mechanical
effects on tumors have been widely studied. For example, in the key work
of Helmlinger et al.’] experimental evidence was provided to support the
idea that the growth of multicellular tumor spheroids is controlled by pres-
sure. More surprisingly, their findings are demonstrated “ .. regardless of
host species, tissue of origin, or differentiation state.” These, and similar
ones(*® motivate the study of single cell mechanics, multiple cell mechanical
interactions, and their effect on the global dynamics of growing ensembles.

Several approaches have been investigated to understand the mechanics of

*Corresponding author, E-mail: ignacio.romero@upm.es.



2 Chapter 1 Modeling and Simulations of the Dynamics of Growing Cell Clusters

growing cell clusters, cancer in particular®). The oldest models employ partial
differential equations that treat tumors as continua with deterministic growth
(see [7] and references therein). While these approaches allow of the study
of complete tumors, they can not provide enough details of the mechanical
effects at the micro scale, since cells are smeared out and are not represented.

The second type of approaches employed for studying cell population dy-
namics is based on cellular automata (see [8-10] among many others). These
methods represent individual cells and their behavior, so they allow much
richer resolution than smeared models. In an effort to keep the computa-
tional cost low, many of the geometrical/mechanical details are often ig-
nored. Some cellular automata include sophisticated discrete evolution laws,
and even some crude mechanical behavior.

The computational model that is presented in the current work advocates
the use of individual entities to represent each cell in the cluster, just as
cellular automata. However, in contrast with the latter, the proposed models
have sufficient mechanical and geometrical details so as to replicate, at least
qualitatively, the most important phenomena that seem to be at the heart
of their mechanical behavior. The underlying motivation is to provide a test-
bed for the mechanical response of cell clusters based on first principles and
as few ad hoc evolution rules as possible. This environment will allow test
hypothesis on the effect of mechanical variables on growth or elimination of
cell colonies while providing very high definition pictures of the geometry and
internal variables of the ensembles.

The basic mechanical features that are represented in the model are: de-
formation, material response, growth, adhesion, and repulsion. To replicate
in silico all these effects, a nonlinear finite element model is employed. In it,
every single cell is defined as a Deformable solid of ellipsoidal shape capable of
following complex deformation modes. The material for each body is homo-
geneous and isotropic whose constants are chosen so as to qualitatively match
experimental results. Growth, an attribute that most cellular automata do
not incorporate, is described in a mechanically sound manner, whose rate
is predetermined based on each cell’s age. A key ingredient of the model is
the numerical treatment of cell-to-cell interation forces. The computational
cost of a molecule-based, membrane-to-membrane interaction model is pro-
hibitive. Thus, a macroscopic model is incorporated into the finite element
computations using standard penalty constraints and surface-to-surface po-
tentials. Finally, a decision tree is employed to capture the most basic events
of the life cycle of each cell. At each instant, a cell might be divided or die
depending on random decisions whose probability function depends on the
cell’s age and its mechanical stresses.

The model described in the current article still fails to become predictive.
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In order to do so, larger number of cells need to do considered in each cluster,
and additional effects should be incorporated into the model (among others,
transport of nutrients and oxygen, pH, etc). Nevertheless, it provides a higher
level of resolution than cellular automata and will be progressively improved
and validated.

The outline of the rest of the article is as follows: In Section 1.2 the ge-
ometrical description of individual cells is discussed, both at the continuum
and the computational levels. Then, in Section 1.3, their mechanical equi-
librium is formulated. Section 1.4 describes the two mechanical interactions
which are considered among cells, namely, interpenetration constraints and
adhesion. The simplified logic for the life cycle of each cell is presented in
Section 1.5 and details of the whole numerical implementation are provided
in Section 1.6. A large-scale numerical simulation of hundreds of interacting
cells is described in Section 1.7, using all the model features presented before.
The article concludes with a summary of results in Section 1.8.

1.2 Single cell geometry and kinematics

In order to model the salient features of deformable growing cells, a de-
formable body is defined whose mechanical response resembles that of a cell.
Sophisticated cell mechanical models can be found in the literature that are
used to study various aspects of the cell deformation. They employ either
tensegrities to reproduce the mechanical response of the cytoskeleton as in,
for example, [11, 12], or continuum finite elements as in [13, 14]. In all cases,
high accuracy in reproducing simple mechanical tests can only be obtained
at the expense of complex equations and computational models, which, in
practice, preclude their use for studying the joint behavior and interactions
of hundreds of cells. In this work, rather than attempting to accurately model
the mechanics of individual cells, we identify the essential mechanical fea-
tures of their behavior and model them, at least, in a qualitatively correct
fashion.

We propose next an isotropic, homogenized cell model that accounts, in an
approximate manner, for the mechanical response of the cell, its membrane,
its cytoskeleton, organelles, etc. The equations are the standard equilibrium
partial differential equations of a deformable nonlinear solid with growth. In
this section we focus on their geometric description and kinematics, includ-
ing growth. Both the continuum and numerical models will be described,
illustrating the generality and flexibility of the approach.
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1.2.1 The continuum model

Each cell is assumed to be a set of particles that occupy, in the reference
growth-free configuration, an open set B, of R® and particles labeled by X.
At time ¢, the cell occupies a region B; € R3. Particles X € B, are mapped
onto points ¢ € B; by the deformation ¢ so that @ = p(X,1).

The deformation gradient F; = grad [¢] is the function that maps neigh-
borhoods of X onto their deformed counterpart at x. By assumption, we
consider motions so that the deformation gradient is of the form

F = FyF,. (1.1)

The term Fj; accounts for the growth of the material and it is assumed, in
our model, to be known a priori. The term Fy is the part of the deformation
gradient that is associated with strains and stresses, and the only part that
enters the formulation of the material model. Hence, we define the right
Cauchy—Green deformation tensor as

C = F]Fy. (1.2)

See Fig.1.1 for an illustration of this kinematic concept.

Fig.1.1 Cell kinematics, including growth, described at the differential level.

In living organisms, growth is controlled by space, nutrients, biological
signals, etc, and it is anisotropic in general. In the proposed framework,
however, we will employ the simplest model of growth that will allow us to
concentrate on the mechanical phenomena. It consists of an ad hoc rule for the
growth part of the deformation gradient which, furthermore, is homogeneous,
isotropic and of the form

Fy(X,t) = g(t)I . (1.3)

In the previous equation g : [0,00) — [1,G] is a continuous, monotonically
increasing function from 1, the reference un-grown state, to G, a constant
related to the volume of the adult cell.
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1.2.2 The numerical model for the cell geometry

Every cell is discretized with a nonlinear finite element model. A special
mesh generator has been defined to create cells of ellipsoidal shape with
arbitrary dimensions and with selectable mesh density. Other types of cell
geometry could be used, since this step is completely independent of the rest
of the model but, for simplicity, results shown in this article are restricted to
random ellipsoidal geometry (or spherical, as a special case).

Figure 1.2 shows three identical cells with three different mesh densities.
For the dynamic simulations it is crucial that cells can be created/eliminated
automatically, and that the end user only selects the desired resolution. This
choice has the most dramatic impact on the overal CPU cost of all other
assumptions.

(a) (b)

Fig. 1.2 Three cell meshes with different levels of mesh refinement.

1.3 Single cell equilibrium and material model

The equilibrium equations of mechanics are imposed over every volume ele-
ment of the cell using a nonlinear finite element formulation. This solution
step is exact, up to the finite element error, and accounts for every internal
stress and strain component in the cell.

1.3.1 Cell equilibrium

The equilibrium equations of the cell are the standard balance of equations in
continuum mechanics. If S is the second Piola—Kirchhoff stress tensor, then
the balance of linear momentum can be stated as

div[FS]=0 in B,,

1.4
FSN =T on 0B,. )
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In the previous equations, operator div [-] is the material divergence and T
is known forces on the cell boundary. Alternatively, the equilibrium can be
formulated as the position that minimizes the potential energy

Vie)= [ Wieradlp], Fy)aV + Vo). (15)

where W is a stored energy function on the cell material and Vi is the
potential of the external forces.

In an abstract way, the solution of the mechanical cell problem consists
in finding ¢ given a known growth law F, and known surface tractions T'.
Details of the formulation and solution of Eq.(1.4) in the context of the finite
element method can be found in standard references. See, for example, Ref.
[15].

To close the formulation of the boundary value problem of single cell
mechanics suffices to define a constitutive law for the homogenized material.

1.3.2 The material model

The choice of constitutive law is completely independent of the rest of ingre-
dients of our model. Hence, any sensible model could be employed, possibly
incorporating finite strain elastic, viscous, or even plastic effects.

In our simulations we have employed hyperelastic material models, the
simplest ones that might be used to approximate the most elementary me-
chanical behavior as reported throughout the literature regarding “traction”
tests of the cells(1®:17). The goal is to obtain cell-like deformable solids whose
mechanical response resembles that of typical cells. To this end, a standard
neo-Hookean model is employed as defined in [18]. The symmetric Piola-
Kirchhoff stress tensor is thus defined by S = 20cW, where W is the stored
energy function of the form

W =U(J)+ g(I1 —3)—plogJ, U(J)= %(log 2 (1.6)

with I; = tr[C] and J = y/det(C). The two elastic constants ), u are ob-
tained by fitting experimental data with the model.

1.3.3 Determination of material constants
In order to select representative elastic constants for Eq.(1.6) we use the

experimental data provided in [19]. In this reference force-displacement curves
are reported for compression tests performed over C2C12 mouse myoblasts.
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It is not the goal of this modeling phase to find the value of the elastic
constants of the material that these cells are made of. Rather, a phenomeno-
logical value is sought out so that when a cell of the type described in Section
1.2 is employed in a numerical simulation, its overall response matches the
experimental results. This distinction is relevant because it allows us to em-
ploy relatively coarse finite element meshes without unacceptable levels of
inaccuracy, at least in the dominant deformation modes. In turn, this results
in material constants which are mesh-dependent. In the simplest possible
model in this section, a single node is defined in the cell interior. This crude
discretization is sufficient for a qualitative approximation.

In our simulations a spherical cell-like body of volume 2 520 um?® is con-
sidered. The material model is neo-Hookean with stored energy function
defined in Eq.(1.6). For each level of mesh refinement, the corresponding
Young’s moduli and Poisson’s ratio are obtained to fit the experimental data
of the compression tests. For the coarse mesh, the one employed in the rest
of the simulations, the elastic constants found have values A = 40.3 kPa and
1= 4.48 kPa.

To carry out the simulation, a fully grown cell is placed between two
rigid surfaces which are brought close to each other, compressing the cell
and deforming it. Figure 1.3 shows four stages during the compression test
and Fig.1.4 depicts the compression force vs. the relative diameter change
obtained with the numerical model described above, superimposed to the
experimental results alluded to above. The agreement is good enough for
qualitative purposes. The change of slope in the deformation curve is due to
the discretization error in the coarse mesh employed.

Pressure (Pa) Pressure (Pa)
1 000 1000

&500 3 500

0 0

(a) (b)

Pressure (Pa) Pressure (Pa)
1 000 1 000
I
;750 -750
[ 500 —- f 500
i 250 l 250
0 0

(c) (d)

Fig. 1.3 Cell compresion test. The cell is cut through a vertical plane to show the
stress distribution in the inside (color plot in the book end).
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Fig.1.4 Compression force vs. relative diameter change in the compression test
of a cell-like spheroid. The continuous line shows a fit of the experimental results
reported in [19]. The dots correspond to the numerical results obtained with the
numerical model.

1.4 Modeling cell interactions

Having defined a model for individual cells, it remains to incorporate the
rules that will serve to represent the interaction between cells, eventually
governing the global system dynamics. As in the case of single cells, it is
not trivial to determine which complex interactions should be considerd, and
which should be neglected. In any case, and as before, it is not possible to
attempt modeling all interactions. Rather, one should aim to select the ones
that most crucially affect the overall response.

The most fundamental effect of mechanical nature among cells is attrac-
tion/repulsion forces. The detailed picture of cell-to-cell forces is described
in detail in the literature [20] and their accurate description might be crucial
for the study of certain problems(?!. In our analysis, having already made
simplifications at the level of the cell mechanics, it becomes reasonable to
attempt again to capture the most basic effects in a qualitatively correct
way, but without excessive complexity that would preclude a full numerical
solution.

With these considerations we aim to model cell repulsion first. The mi-
cromechanical mechanisms behind cell interpenetration are complex and
would require a high resolution of the cell geometry[?2:23]. Using, for exam-
ple, Lennard—-Jones type potentials to model such effect would entail almost
a molecular description of the cell membrane. Instead, we propose to coarse
grain all the repulsive forces within the variational formulation of the prob-
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lem (as required for the finite element implementation) using the simplest
penalty method. Using this standard technique?¥!, the penetration of the
two external surfaces of the cell is “artificially” avoided. Of course, the re-
pulsion forces no longer are physically based, but they nevertheless account
for the right amount of resultant guaranteeing the constraint.

Cell adhesion is also represented in the model. As before, the microme-
chanical causes for such forces are complex and their detailed resolution is
outside the goals of the current model. We propose to model them by defining
a surface-to-surface attraction that accounts for these effects. As described
below, it can be easily incorporated within the finite element formulation and
adjusted so as to fit experimental data.

1.4.1 Cell-to-cell contact

Interpenetration forces guarantee that two cells, even when they get close
to or pressed against each other, do not overlap. Ignoring their molecular
explanation, their overall effect can be described in a purely geometrical
manner and, in this sense, easily implemented. In fact, at the cell scale,
these forces can be described as contact forces. This type of interactions has
been thoroughly studied in the context of Solid Mechanics and its numerical
implementation is well documented (25261,

The simplest numerical strategy to enforce interpenetration is based on
penalization. Given two cells By, Bo, let I'y, I'> denote, respectively, their
boundaries. For each point X; € I, the signed distance to Iy is denoted
A(X), and defined as being positive if X is outside By and negative oth-
erwise. Then, the penetration of X is defined as

m(X1) = (-A(X1)) , (L.7)

where (-) denotes the Macaulay bracket. By symmetry, the same argument
applies to the penetration of the Bs into B;. Then, to enforce the interpene-
trability of either body into its neighbour it suffices to augment Eq.(1.5) by
the penalization term

/ % r(X)2 dS +/ % r(X)2dS . (1.8)
r 2 r, 2

The penalization constant s, must be positive and large in comparison with
any characteristic stiffness of the cell. Recommendations for the choice of this
contact constants are provided in standard texts on finite elements and we
refer to the references alluded to before.
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1.4.2 Cell-to-cell adhesion

When the surfaces of two neighboring cells become close, adhesion forces
appear that try to bring them together and to keep them in this way. As in
the case of the repulsion forces, we propose a phenomenological model that
accounts for this type of interactions in such a way that it is qualitatively
correct and matches closely experimental data. Following the results reported
in [19], adhesion forces are incorporated between membrane surfaces closer
than a cut-off distance §,. Based on the experimental data of this article,
adhesion forces per unit of surface on one cell and unit of surface of the
opposing cell have constant value k, as long as their relative distances are
below J,, and zero otherwise.

Let 71 = (1) and 72 = (I2) be the boundaries of the deformed cells.
To include adhesion effects on the formulation, an additional force per unit
area of the surface ; must be added at each point x; € ~; of the form

Fy(z) =/ F(1,w2) 4S5, (1.9)

where the force f per unit of area squared has value

T2 — I

f(ml’zQ):naH(60_|$2-$l|) (1-10)

|2 — 21|’
and H : R — {0,1} is the Heaviside step function. Similarly, points on the
surface o are attracted to y; with a force per unit area

FQ(.’IE2) = / f(il!z,w]) dSl (111)
2!
From the previous two equations it follows that
/ Fl(il:l)d51+/ FQ(QZQ) dS, = 0. (112)
Y Y2

The Equation (1.10) models adhesion forces of constant moduli (per unit
of surface squared) when the distance between the interacting surfaces is
below a threshold §,. This represents bonds that are created when the cell
membranes are close to each other and only break when separated beyond
Oo-

To implement the adhesion force on the surface v, (respectively 72) the
following integral must be evaluated

/ F1 dSl =/ f(il}'l,.’EQ) dS2 dSl (113)
71 Y1 Y72
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In the context of a finite element model, the previous integral is approximated
with the finite sum

/ f(ml,wQ) dS; dS; = Z Z f(Ci,Cj)AiAj, (1.14)
Y1 Y2

Tiev1 Tj€Y2

where T;,T; are the triangles on the cell surfaces, C;, C; their centers, and
A;, A; their corresponding areas.

1.4.3 Cell-to-cell interaction test

To illustrate the effect of the two types of cell interactions defined in this
section we show next some results of the virtual test of two cells interacting
coming into contact with each other, and then pulled apart.

Two identical spherical cells of initial diameter 5.6 pm are placed with
their centers fixed at a distance also of 5.6 um. Growth in the cells progres-
sively increases their volume, eventually multiplying its original value by 3.
Then, due to their proximity and the restriction on their centers, both cells
come into contact, deforming while they press one against the other.

Once the two cells are fully grown and the contact forces are developed,
they are slowly pulled apart. In this process, the contact forces are reduced.
Eventually, the two previously contacting surfaces no longer try to interpen-
etrate and adhesion forces are then activated which attempt to keep them
together.

Figure 1.5 describes a complete sequence of the contact/adhesion test.
Pressure builds up when the two cells are pressed one another, especially
close to the interacting surfaces. When the two bodies are separated, pressure
decreases and adhesion pulls the two cells together. Figure 1.6 plots the values

Pressure(MPa) Pr(;esosou]req(MPa)
0.001 5 'y d
“ £0.001 ”8‘001
0 :
g—0.00I %—OAOOI
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