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Preface

Survival analysis concerns sequential occurrences of events governed by probabilistic laws.
Recent decades have witnessed many applications of survival analysis in various disciplines.
The primary objective of this book is to provide an introduction to the many specialized
facets on survival analysis. Scope-wise, this book is expected to appeal to a wide variety of
disciplinary areas. Given my multidisciplinary background in training and research, this
book of survival analysis covers techniques and specifications applied in medicine, biosta-
tistics, demography, mathematical biology, sociology, and epidemiology, with practical
examples associated with each of those disciplines. The celebrated Cox model, used in
almost all applied areas, is paid special attention to in this book, with three chapters devoted
to this innovative perspective. I also describe counting processes and the martingale theory
in considerable detail, in view of their flexibility and increasing popularity in survival analy-
sis, particularly in the field of biostatistics. Regression modeling, mathematical simulation,
and computing programming, which attach to different phases of survival analysis, are
described and apphlied extensively in this book, so scientists and professors of various dis-
ciplines can benefit from using it either as a useful reference book or as a textbook in graduate
courses.

In this book, a large number of survival functions, medels, and techniques are introduced,
described, and discussed with empirical examples. The presentation of those survival per-
spectives starts with the most basic specifications and ends with some more advanced tech-
niques in the literature of survival analysis. With a considerable volume of empirical
illustrations, I attempt to make the transition from the introductory to the advanced levels
as coherent and smooth as possible. Almost for every major survival method or model, step-
by-step instructions are provided for leading the reader in to learning how to perform the
techniques, supplemented by empirical practices, computing programs, and detailed inter-
pretations of analytic results.

Given the focus on application and practice in this book, the audience includes profes-
sionals, academics, and graduate students who have some experience in survival analysis.
A fair number of illustrations on various topics permits professionals to learn new methods
or to improve their professional skills in performing survival analysis. As it covers a wide
scope of survival techniques and methods, from the introductory to the advanced, this book
can be used as a useful reference book for planners, researchers, and professors who are
working in settings involving various lifetime events. Scientists interested in survival analy-
sis should find it a useful guidebook for the incorporation of survival data and methods into
their projects.

Graduate students of various disciplines constitute another important component of the
audience. Social science students can benefit from the application of survival concepts and
methods to the solution of problems in sociology, economics, psychology, geography, and
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political science. This book provides a useful framework and practical examples of applied
social science, especially at a time when more survival-related questions are raised. The
accessibility of many observational, longitudinal data in the public domain since the 1980s
will facilitate interested students to practice further the methods and techniques learned
from this book. Graduates students of biology, medicine, and public health, who are inter-
ested in doing research for their future careers, can learn plenty of techniques from this book
for performing mathematical simulation, clinical trials, and competing risks analyses on
mortality and disease. Survival analysis and some other related courses have long been
recognized as essential components for graduate students training in mathematical biology,
epidemiology, and some of the biomedical departments. In medical schools, for example,
this book can have wide appeal among medical students who want to know how to analyze
data of a clinical trial for understanding the effectiveness of a new medical treatment or of
a new medicine on disease.

If the reader attempts to understand the entire body of the methods and techniques
covered by this book, the prerequisites should include calculus, matrix algebra, and general-
ized linear modeling. For those not particularly familiar with that required knowledge, they
might want to skip detailed mathematical and statistical steps, and place their focus upon
empirical illustrations and computer programming skills. By doing so, they can still command
how to apply various survival techniques effectively, thereby adding new dimensions to their
professional, research, or teaching activities. Therefore, this book can be read selectively by
the reader who is not extremely competent with high-level mathematics and statistics.

The reviewers of the proposal and an example chapter for this book were: Kenneth Land,
Duke University; David Swanson, University of California, Riverside; and Jichuan Wang,
George Washington University. Additionally, a number of other colleagues and friends have
enriched, supported and refined the intellectual development of this book, including Lyn
Albrecht, Kristie Gore, Albert I. Hermalin, James Edward McCarroll, Robert Ursano, Lois
Verbrugge, Anatoli I. Yashin, and Chu Zhang. Sincere thanks are given to Paul T. Savarese
of the SAS Institute for letting me use some of his personal SAS programs in Chapters 4
and 8. Part of the work in Chapter 8 was initiated at the Population Studies Center, the
Institute for Social Research at the University of Michigan, and the mentorship of Albert 1.
Hermalin is specially acknowledged.

I owe special thanks to Charles C. Engel, whose consistent support and help has made
completion of this book possible. The staff of the Deployment Health Clinical Center, Walter
Reed National Military Medical Center, provides tremendous dedication, competence, and
excellence in the course of the preparation of this book. Malisa Arnold’s and Phoebe
McCutchan’s assistance in editing the text and some of the graphs was vital.

Finally, I would like to thank my wife, Ming Dong, for her support and encouragement
throughout the entire period of preparing, writing, and editing this book.

Xian Liu
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1

Introduction

1.1 'What is survival analysis and how is it applied?

‘What is survival analysis? Before starting discussion on this topic, think about what
‘survives.” In the cases considered here, we are talking about things that have a life span,
those things that are ‘born,” live, change status while they live, and then die. Therefore,
‘survival’ is the description of a life span or a living process before the occurrence of a status
change or, using appropriate jargon, an event.

In terms of ‘survival,” what we think of first are organisms like various animal species
and other life forms. After birth, a living entity grows, goes through an aging process, and
then decomposes gradually. All the while, they remain what they are — the same organisms.
The gradual changes and developments over a life course reflect the survival process. For
human beings in particular, we survive from death, disease, and functional disablement.
While biology forms its primary basis, the significance of survival is largely social. At dif-
ferent life stages, we attend school, get married, develop a professional career, and retire
when getting old. In the meantime, many of us experience family disruption, become
involved in social activities, cultivate personal habits and hobbies, and make adjustments to
our daily lives according to physical and mental conditions. These social facets are things
that are not organisms but their life span is like that of a living being: things that live, things
that have beginnings, transformations, and then deaths. In a larger context, survival can also
include such events as an automobile breakdown, the collapse of a political system in a
country, or the relocation of a working unit. In cases such as these and in others, existence
dictates processes of survival and their status change, indicated by the occurrence of events.

The practice of survival analysis is the use of reason to describe, measure, and analyze
features of events for making predictions about not only survival but also ‘time-to-event
processes’ — the length of time until the change of status or the occurrence of an event — such
as from living to dead, from single to married, or from healthy to sick. Because a life span,
genetically, biologically, or mechanically, can be cut short by illness, violence, environment,
or other factors, much research in survival analysis involves making comparisons among

Survival Analysis: Models and Applications, First Edition. Xian Liu.
© 2012 Higher Education Press. All rights reserved.



2 SURVIVAL ANALYSIS

groups or categories of a population, or examining the variables that influence its survival
processes. As they have come to realize the importance of examining the inherent mecha-
nisms, scientists have developed many methods and techniques seeking to capture
underlying features of various survival processes. In the academic realm, survival analysis
is now widely applied in a long list of applied sciences, owing considerably to the availability
of longitudinal data that records histories of various survival processes and the occurrences
of various events. At present, the concept of survival no longer simply refers to a biomedical
or a demographic event; rather, it expands to indicate a much broader scope of phenomena
characterized by time-to-event processes.

In medical research, clinical trials are regularly used to assess the effectiveness of new
medicines or treatments of disease. In these settings, researchers apply survival analysis to
compare the risk of death or recovery from disease between or among population groups
receiving different medications or treatments. The results of such an analysis, in turn, can
provide important information with policy implications.

Survival analysis is also applied in biological research. Mathematical biologists have
long been interested in evolutionary perspectives of senescence for human populations and
other species. By using survival analysis as the underlying means, they delineate the life
history for a species’ population and link its survival processes to a collection of physical
attributes and behavioral characteristics for examining its responses to its environment.

Survival data are commonly collected and analyzed in social science, with topics ranging
widely, from unemployment to drug use recidivism, marital disruption, occupational careers,
and other social processes. In demography, in addition to the mortality analysis, researchers
are concerned with such survival processes as the initiation of contraceptive use, internal
and international migration, and the first live birth intervals.

In the field of public health, survival analysis can be applied to the analysis of health
care utilization. Such examination is of special importance for both planners and academics
because the health services system reflects the political and economic organization of a
society and is concerned with fundamental philosophical issues involving life, death, and
the quality of life.

Survival analysis has also seen wide applications in some other disciplines such as
engineering, political science, business management, and economics. For example, in engi-
neering, scientists apply survival analysis to perform life tests on the durability of mechanical
or electric products. Specifically, they might track a sample of products over their life course
for assessing characteristics and materials of the product’s designed life and for predicting
product reliability. Results of such studies can be used for the quality improvement of the
products.

1.2 The history of survival analysis and its progress

Originally, survival analysis was used solely for investigations of mortality and morbidity
on vital registration statistics. The earliest arithmetical analysis of human survival processes
can be traced back to the 17th century, when the English statistician John Graunt published
the first life table in 1662 (Graunt, 1939, original edition, 1662). For a long period of time,
survival analysis was considered an analytic instrument, particularly in biomedical and
demographical studies. At a later stage, it gradually expanded to the domain of engineering
to describe/evaluate the course of industrial products. In the past forty years, the scope of
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survival analysis has grown tremendously as a consequence of rapid developments in
computer science, particularly the advancement of powerful statistical software packages.
The convenience of using computer software for creating and utilizing complex statistical
models has led scientists of many disciplines to begin using survival models.

As applications of survival analysis have grown rapidly, methodological innovation has
accelerated at an unprecedented pace over the past several decades. The advent of the Cox
model and the partial likelihood perspective in 1972 triggered the advancement of a large
number of statistical methods and techniques characterized by regression modeling in the
analysis of survival data. The major contribution of the Cox model, given its capability of
generating simplified estimating procedures in analyzing survival data, is the provision of a
flexible statistical approach to model the complicated survival processes as associated with
measurable covariates. More recently, the emergence of the counting processes theory, a
unique counting system for the description of survival dynamics, highlights the dawning of
a new era in survival analysis due to its tremendous inferential power and high flexibility
for modeling repeated events for the same observation and some other complicated survival
processes. In particular, this modemn perspective combines elements in the large sample
theory, the martingale theory, and the stochastic integration theory, providing a new set of
statistical procedures and rules in modeling survival data. To date, the counting process
system and the martingale theory have been applied by statisticians to develop new theorems
and more refined statistical models, thus bringing a new direction in survival analysis.

1.3 General features of survival data structure

In essence, a survival process describes a life span from a specified starting time to the
occurrence of a particular event. Therefore, the primary feature of survival data is the descrip-
tion of a change in status as the underlying outcome measure. More formally, a status change
is the occurrence of an event designating the end of a life span or the termination of a survival
process. For instance, a status change occurs when a person dies, gets married, or when an
automobile breaks down. This feature of a status ‘jump’ makes survival analysis somewhat
similar to some more conventional statistical perspectives on qualitative outcome data, such
as the logistic or the probit model. Broadly speaking, those traditional models can also be
used to examine a status change or the occurrence of a particular event by comparing the
status at the beginning and the status at the end of an observation interval. Those statistical
approaches, however, ignore the timing of the occurrence of this lifetime event, and thereby
do not possess the capability of describing a time-to-event process. A lack of this capability
can be detrimental to the quality of analytic results, thereby generating misleading conclu-
sions. The logistic regression, for example, can be applied to estimate the probability of
experiencing a particular lifetime event within a limited time period; nevertheless, it does
not consider the time when the event occurs and therefore disregards the length of the survival
process. Suppose that two population groups have the same rate of experiencing a particular
event by the end of an observation period but members in one group are expected to experi-
ence the event significantly later than do those in the other. The former population group
has an advantaged survival pattern because its average life is extended. Obviously, the logistic
regression ignores this timing factor, therefore not providing precise information.

Most survival models account for the timing factor on a status jump. Given this
capacity, the second feature of survival data is the description of a time-to-event process. In
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the literature of survival analysis, time at the occurrence of a particular event is regarded as
a random variable, referred to as event time, failure time, or survival time. Compared to
statistical techniques focused on structures, the vast majority of survival models are designed
to describe a time course from the beginning of a specific time interval to the occurrence of
a particular event. Given this feature, data used for survival analysis are also referred to as
time-to-event data, which consist of information both about a discrete ‘jump’ in status as
well as about the time passed until the occurrence of such a jump.

The third primary feature of survival data structure is censoring. Survival data are gener-
ally collected for a time interval in which the occurrences of a particular event are observed.
As a result, researchers can only observe those events that occur within a surveillance
window between two time limits. Consequently, complete survival times for many units
under examination are not observed, with information loss taking place either before the
onset or beyond the end of the study interval. Some units may be lost to observation in the
middle of an investigation due to various reasons. In survival analysis, such missing status
on event times is called censoring, which can be divided into a variety of types. For most
censoring types, a section of survival times for censored observations are observable and
can be utilized in calculating the risk of experiencing a particular event. In survival analysis,
this portion of observed times is referred to as censored survival times. As censoring fre-
quently occurs, the majority of survival analysis literally deals with incomplete survival data,
and accordingly scientists have found ways to use such limited information for correctly
analyzing the incomplete survival data based on some restrictive assumptions on the distri-
bution of censored survival times. Given the importance of handling censoring in survival
analysis, a variety of censoring types are delineated in Section 1.4.

As survival processes essentially vary massively based on basic characteristics of the
observations and environmental conditions, a considerable body of survival analysis is con-
ducted by means of censored data regression modeling involving one or more predictor
variables. Given the addition of covariates, survival data structure can be viewed as consist-
ing of information about three primary factors, otherwise referred to as a ‘triple:” survival
times, censoring status, and covariates. Given a random sample of » units, the data structure
for survival analysis actually contains n such triples. Most survival models, as will be
described extensively in later chapters, are built upon such a data structure.

Given different emphases on the variety of features, survival analysis is also known as
duration analysis, time-to-event analysis, event histories analysis, or reliability data analysis.
In this book, these concepts are used interchangeably.

1.4 Censoring

Methodologically, censoring is defined as the loss of observation on the lifetime variable of
interest in the process of an investigation. In survival data, censoring frequently occurs for
many reasons. In a clinical trial on the effectiveness of a new medical treatment for disease,
for example, patients may be lost to follow-up due to migration or health problems. In a
longitudinal observational survey, some baseline respondents may lose interest in participat-
ing in subsequent investigations because some of the questions in a previous questionnaire
are considered too sensitive.

Censoring is generally divided into several specific types. If an individual has entered a
study but is lost to foow-up, the actual event time is placed somewhere to the right of the
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censored time along the time axis. This type of censoring is called right censoring. As right
censoring occurs far more frequently than do other types and its information can be included
in the estimation of a survival model, the focus of this section is on the description of right
censoring. For analytic convenience, descriptions of right censoring are often based on the
assumption that an individual’s censored time is independent of the actual survival time,
thereby making right censoring noninformative. While this assumption does not always hold,
the issue of informative censoring and the related estimating approaches are described in
Chapter 9. Other types of censoring, including left censoring and interval censoring, are also
described in this section. Additionally, I briefly discuss the impact of left truncation on
survival analysis, a type of missing data that is different from censoring.

1.4.1 Mechanisms of right censoring

Right censoring is divided into several categories: Type I censoring, random censoring, and
Type II censoring. In Type I censoring, each observation has a fixed censoring time. Type I
censoring is usually related to a predetermined observation period defined according to the
research design. Generally, a specific length of time is designed with a starting calendar date
and an ending date. In most cases, only a portion of observations would experience a par-
ticular event of interest during this specified study interval and some others would survive
to the endpoint. For those who survive the entire observation period, the only information
known to the researcher is that the actual survival time is located to the right of the endpoint
of the study period along the time axis, mathematically denoted by T > C, where T is the
event time and C is a fixed censored time. Therefore, lifetimes of those survivors are viewed
as right censored, with the length of the censored time equaling the length of the observation
period.

Right censoring also occurs randomly at any time during a study period, referred to as
random censoring. This type of censoring differs essentially from Type I censoring because
the censored time is not fixed, but, rather, behaves as a random variable. Some respondents
may enter the study after a specified starting date and then are right censored at the end of
the study interval. Such observations are also listed in the category of random censoring
because their delayed entry is random. Statistically, time for random censoring can be
described by a random variable C; (the subscript i indicates variation in C among randomly
censored observations), generally assumed to be independent of survival time 7;. Mathemati-
cally, for a sample of n observations, case i (i=1, 2,..., n) is considered randomly
censored if C; < T; and C; < C, where C is the fixed Type I censored time. The censored
survival time for random censoring is measured as the time distance from the time of entry
into the study to the time when random censoring occurs.

Figure 1.1 graphically displays the occurrences of Type I and random censoring. In this
figure, I present data for six individuals who participate in a study of mortality at older ages,
noted by, respectively, persons 1, 2, 3, 4, 5, and 6. The study specifies an observation period
from ‘start of study’ to ‘end of study.” The sign ‘x’ denotes the occurrence of a death, whereas
the sign ‘+ represents right censoring.

In Figure 1.1, person 1 enters the study at the beginning of the study and dies within the
interval. Therefore, this case is an event, with time-to-event T; counted as the time elapsed
from the start of the study to the time of death. Person 2 also enters the study at the begin-
ning of the study, but at the end of the study, this person is still alive. Therefore, person 2
is a typical case of Type I right censoring, with the censored survival time equaling the full



6 SURVIVAL ANALYSIS

1 x
2 +
3 x
4 +
5 +
6 s

Start of study End of study

Calendar time

Figure 1.1 Illustration of Type I and random censoring.

length of the study interval. Persons 3 and 4 both enter the study after the start of the study,
with person 3 deceased during the interval and person 4 alive throughout the rest of the
interval. Consequently, person 3 has an event whose survival time is the distance from the
time of the delayed entry to the time of death, whereas person 4 is a case of random censor-
ing with the censored survival time measured as the length of time between the delayed
entry and the end of the study. Entering the study later than expected, person 4 can also be
considered a left truncated observation, which will be described in Subsection 1.4.2. Finally,
persons 5 and 6 are lost to follow-ups before the termination of the study, with person 5
entering the investigation at the start and person 6 entering during the period of investigation.
Both persons are randomly censored. Their censored times, denoted by Cs and Cs, respec-
tively, measured as the time elapsed between the starting date of the study and the censored
time for person 5, or between the time of the delayed entry and the censored time for person
6. Unlike person 2, censored times for persons 4, 5, and 6 differ from each other and are
smaller than C.

Type 11 right censoring refers to the situation in which a fixed number of events is targeted
for a particular study. When the designed number of events is observed, a study would
terminate automatically and all individuals whose survival times are beyond the time of
termination are right censored. For those individuals, the censored survival time is measured
as the distance from the start of observation to the time at which the study terminates. Type
II right censoring is not related to a fixed ending time; rather, it is associated with a time
determined by a date when a targeted number of events are observed. Given this restriction,
surveys or clinical trials associated with Type II right censoring are much rarer than those
with other types of right censoring.

1.4.2 Left censoring, interval censoring, and left truncation

Left censoring refers to a data point, known to be prior to a certain date but unknown about
its exact location. This type of censoring frequently occurs in a study design involving
two separate study stages. Individuals who enroll in the first selection process but are not
eligible for the second process are viewed as left censored. For example, in a study of the
initiation of first contraceptive use after marriage, if a couple marries but has already used



