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Preface

The aim of this book is to make the quantum theory of condensed matter
accessible. To this end we have tried to produce a text that does not demand
extensive prior knowledge of either condensed matter physics or quantum
mechanics. Our hope is that both students and professional scientists will find
it a user-friendly guide to some of the beautiful but subtle concepts that form
the underpinning of the theory of the condensed state of matter.

The barriers to understanding these concepts are high, and so we do not try
to vault them in a single leap. Instead we take a gentler path on which to
reach our goal. We first introduce some of the topics from a semiclassical
viewpoint before turning to the quantum-mechanical methods. When we
encounter a new and unfamiliar problem to solve, we look for analogies
with systems already studied. Often we are able to draw from our storehouse
of techniques a familiar tool with which to cultivate the new terrain. We deal
with BCS superconductivity in Chapter 7, for example, by adapting the
canonical transformation that we used in studying liquid helium in
Chapter 3. To find the energy of neutral collective excitations in the frac-
tional quantum Hall effect in Chapter 10, we call on the approach used for
the electron gas in the random phase approximation in Chapter 2. In study-
ing heavy fermions in Chapter 11, we use the same technique that we found
successful in treating the electron—phonon interaction in Chapter 6.

Experienced readers may recognize parts of this book. It is, in fact, an
enlarged and updated version of an earlier text, 4 Quantum Approach to
the Solid State. We have tried to preserve the tone of the previous book by
emphasizing the overall structure of the subject rather than its details. We
avoid the use of many of the formal methods of quantum field theory, and
substitute a liberal amount of intuition in our effort to reach the goal of
physical understanding with minimal mathematical complexity. For this we
pay the penalty of losing some of the rigor that more complete analytical
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X Preface

treatments can yield. The methods used to demonstrate results are typically
simple and direct. They are expedient substitutes for the more thorough
approaches to be found in some of the bulkier and more specialized texts
cited in the Bibliography.

Some of the problems at the ends of the chapters are sufficiently challenging
that it took the authors a longer time to solve them than it did to create them.
Instructors using the text may therefore find it a time-saver to see our versions
of the solutions. These are available by sending to solutions@cambridge.org
an e-mail containing plausible evidence that the correspondent is in fact a
busy instructor rather than a corner-cutting student pressed for time on a
homework assignment.

The earlier version of this text owed much to Harold Hosack and Philip
Nielsen for suggested improvements. The new version profits greatly from the
comments of Harsh Mathur, Michael D. Johnson, Sankar Das Sarma, and
Allan MacDonald. Any mistakes that remain are, of course, ours alone. We
were probably not paying enough attention when our colleagues pointed
them out to us.

Philip Taylor  Cleveland, Ohio
Olle Heinonen Minneapolis, Minnesota
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Chapter 1

Semiclassical introduction

1.1 Elementary excitations

The most fundamental question that one might be expected to answer is
“why are there solids?”” That is, if we were given a large number of atoms
of copper, why should they form themselves into the regular array that we
know as a crystal of metallic copper? Why should they not form an irregular
structure like glass, or a superfluid liquid like helium?

We are ill-equipped to answer these questions in any other than a quali-
tative way, for they demand the solution of the many-body problem in one of
its most difficult forms. We should have to consider the interactions between
large numbers of identical copper nuclei — identical, that is, if we were for-
tunate enough to have an isotopically pure specimen — and even larger num-
bers of electrons. We should be able to omit neither the spins of the electrons
nor the electric quadrupole moments of the nuclei. Provided we treated the
problem with the methods of relativistic quantum mechanics, we could hope
that the solution we obtained would be a good picture of the physical reality,
and that we should then be able to predict all the properties of copper.

But, of course, such a task is impossible. Methods have not yet been
developed that can find even the lowest-lying exact energy level of such a
complex system. The best that we can do at present is to guess at the form the
states will take, and then to try and calculate their energy. Thus, for instance,
we might suppose that the copper atoms would either form a face-centered or
body-centered cubic crystal. We should then estimate the relative energies of
these two arrangements, taking into account all the interactions we could. If
we found that the face-centered cubic structure had the lower energy we
might be encouraged to go on and calculate the change in energy due to
various small displacements of the atoms. But even though we found that
all the small displacements that we tried only increased the energy of the



2 Semiclassical introduction

system, that would still be no guarantee that we had found the lowest energy
state. Fortunately we have tools, such as X-ray diffraction, with which we can
satisfy ourselves that copper does indeed form a face-centered cubic crystal,
so that calculations such as this do no more than test our assumptions and our
mathematics. Accordingly, the philosophy of the quantum theory of con-
densed matter is often to accept the crystal structure as one of the given
quantities of any problem. We then consider the wavefunctions of electrons
in this structure, and the dynamics of the atoms as they undergo small dis-
placements from it.

Unfortunately, we cannot always take this attitude towards the electronic
structure of the crystal. Because we have fewer direct ways of investigating
the electron wavefunction than we had for locating the nuclei, we must some-
times spend time questioning whether we have developed the most useful
picture of the system. Before 1957, for example, people were unsuccessful
in accounting for the properties of superconductors because they were start-
ing from a ground state that was qualitatively different from what it is now
thought to be. Occasionally, however, a new technique is introduced by
means of which the symmetry of electronic states can be probed. An example
is shown on the cover of this book. There the effect on the electronic structure
of an impurity atom at the surface of a high-temperature superconductor is
shown. The clover-leaf symmetry of the superconducting state is clearly seen
in the scanning-tunneling-microscope image.

The interest of the experimentalist, however, is generally not directed
towards the energy of the ground state of a substance, but more towards
its response to the various stimuli that may be applied. One may measure its
specific heat, for example, or its absorption of sound or microwaves. Such
experiments generally involve raising the crystal from one of its low-lying
states to an excited state of higher energy. It is thus the task of the theorist
not only to make a reasonable guess at the ground state, but also to estimate
the energies of excited states that are connected to the ground state in a
simple way. Because the ground state may be of little further interest once
its form has been postulated, it is convenient to forget about it altogether and
to regard the process of raising the system to a higher state as one of creating
something where nothing was before. The simplest such processes are known
as the creation of elementary excitations of the system.

The usefulness of the concept of elementary excitations arises from a
simple property that most many-body systems have in common. Suppose
that there are two excited states, and that these have energies above the
ground state of £, and &,, respectively. Then it is frequently the case that
there will also be one particular excited state whose energy, &£, is not far
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removed from (€, + £,). We should then say that in the state of energy £; all
the excitations that were present in the other two states are now present
together. The difference AE between &; and (£, + &,) would be ascribed to
an interaction between them (Fig. 1.1.1). If the states of energy £, and &,
could not themselves be considered as collections of other excitations of
lower energy then we say that these states represent elementary excitations
of the system. As long as the interaction energy remains small we can with
reasonable accuracy consider most of the excited states of a solid as collec-
tions of elementary excitations. This is clearly a very useful simplification of
our original picture in which we just had a spectrum of energy levels which
had no particular relationship to one another.

At this point it is useful to consider a division of the possible types of
elementary excitations into two classes, known as quasiparticle excitations
and collective excitations. The distinction between these is best illustrated
by some simple examples. We know that if we have a gas of noninteracting
particles, we can raise the energy of one of these particles without affecting
the others at all. Thus if the gas were originally in its ground state we could
describe this process as creating an elementary excitation. If we were now to
raise the energy of another particle, the energies of the excitations would
clearly add up to give the energy of the doubly excited system above its
ground state. We should call these particle excitations. If now we include
some interactions between the particles of the gas, we should expect these,
particle excitations to decay, since now the excited particle would scatter off
the unexcited ones, and its energy and momentum would gradually be lost.
However, if the particles obeyed the Pauli Exclusion Principle, and the energy
of the excitation was very low, there would be very few empty states into
which the particle could be scattered. We should expect the excitation to
have a sufficiently long lifetime for the description in terms of particles to

p T

81 &2 &3 &, +&2

¥ ] i

Figure 1.1.1. When two elementary excitations of energies £, and £, are present
together the combined excitation has an energy &£; that is close to &, + &,.
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be a useful one. The energies of such excitations will differ from those for
noninteracting particles because of the interactions. It is excitations such as
these that we call quasiparticles.

A simple example of the other class of excitation is that of a sound wave in
a solid. Because the interatomic forces in a solid are so strong, there is little
profit in considering the motion of an atom in a crystal in terms of particle
motion. Any momentum we might give to one atom is so quickly transmitted
to its neighbors that after a very short time it would be difficult to tell which
atom we had initially displaced. But we do know that a sound wave in the
solid will exist for a much longer time before it is attenuated, and is therefore
a much more useful picture of an excitation in the material. Since a
sound wave is specified by giving the coordinates not of just one atom but
of every atom in the solid, we call this a collective motion. The amplitude of
such motion is quantized, a quantum unit of traveling sound wave being
known as a phonon. A phonon is thus an example of a collective excitation
in a solid.

We shall now consider semiclassically a few of the more important excita-
tions that may occur in a solid. We shall postpone the more satisfying
quantum-mechanical derivations until a later chapter. By that time the
familiarity with the concepts that a semiclassical treatment gives may reduce
somewhat the opacity of the quantum-mechanical procedures.

1.2 Phonons

The simplest example of collective motion that we can consider is that of a
linear chain of equal masses connected by springs, as illustrated in Fig. 1.2.1.
The vibrational modes of this system provide some insight inte the atomic
motion of a crystal lattice.

If the masses M are connected by springs of force constant K, and we call the
displacement of the nth mass from its equilibrium position y,, the equations

la— ¥,

Figure 1.2.1. This chain of equal masses and springs supports collective motion in
the form of traveling waves.
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of motion of the system are

2
d7y,
dr?

M = K[(}.n-i—l - _"") - (,Vn - ,‘yn—l)]

= K(}‘IH—I - 2."‘)1 +yn_])- (121)

These equations are easily solved for any boundary conditions if we remem-
ber the recursion formula for cylindrical Bessel functions,

dJ,

dr

1
E [Jn+l([) - Jn—l([)]-

from which

a'zJ,,
dr

1
== Z [‘IlH-:([) - 2‘]'1([) + J, _Z(I)].

The problem we considered in Section 1.1 was to find the motion of the
masses if we displaced just one of them (n =0, say) and then released it.
The appropriate solution is then

}',,(t) = JZn(wmI)

where wj, = 4K/M. This sort of behavior is illustrated in Fig. 1.2.2. The
displacement of the zeroth mass, being given by Jy(w,,!), is seen to exhibit
oscillations which decay rapidly. After just a few oscillations yy(7) behaves as
72 cos (w,,1). This shows that particle-like behavior, in which velocities are
constant, has no relation to the motion of a component of such a system.

"n([) Y

Figure 1.2.2. These Bessel functions are solutions of the equations of motion of the
chain of masses and springs.
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And this is quite apart from the fact that in a crystal whose atoms are
vibrating we are not fortunate enough to know the boundary conditions of
the problem. This direct approach is thus not very useful.

We find it more convenient to look for the normal modes of vibration of
the system. We make the assumption that we can write

Y o €HD), (1.2.2)

where w is some function of the wavenumber k, and a is the spacing between
masses. This satisfies the equations of motion if

_sz o K(eika + e—ika - 2).

that is, if

w = tw, sin (1ka).

The solution (1.2.2) represents traveling waves of frequency w and wave-
number (defined for our purposes by 2m/A, where A is the wavelength)
equal to k. The group velocity v is given by dw/dk, the gradient of the
curve shown in Fig. 1.2.3. We note that as w approaches its maximum
value, w,, the group velocity falls to zero. This explains why the Bessel
function solution decayed to an oscillation of frequency w,, after a short
time, if we realize that the original equation for y,(¢) can be considered as
a superposition of waves of all wavenumbers. The waves of low frequency,
having a large group velocity, travel quickly away from the zeroth site, leav-
ing only the highest-frequency oscillations, whose group velocity is zero.

k

Figure 1.2.3. The dispersion curve for the chain of masses and springs.
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It is formally straightforward enough to find the normal modes of vibra-
tion for systems more complicated than our linear chain of masses. The
extension to three dimensions leads us to consider the polarization of the
lattice waves, that is, the angle between k, which is now a vector, and the
direction of displacement of the atoms. We can also introduce forces between
atoms other than nearest neighbors. This makes the algebra of finding w(k)
more involved, but there are no difficulties of principle. Introduction of two
or more different kinds of atom having different masses splits the graph of
w(k) into two or more branches, but as long as the restoring forces are all
proportional to the displacement, then solutions like Eq. (1.2.2) can be
found.

A phonon is the quantum-mechanical analog of the lattice wave described
by Eq. (1.2.2). A single phonon of angular frequency w carries energy fiw. A
classical lattice wave of large amplitude corresponds to the quantum situa-
tion in which there are many phonons present in one mode. We shall see later
that a collection of phonons bears some similarity to a gas of particles. When
two particles collide we know that the total momentum is conserved in.the
collision. If we allow two phonons to interact we shall find that the total
wavenumber is conserved in a certain sense. For this reason phonons are
sometimes called quasiparticles, although we shall avoid this terminology
here, keeping the distinction between collective and particle-like behavior.

1.3 Solitons

The chain of masses connected by Hookean springs that we considered in the
previous section was a particularly easy problem to solve because the equa-
tions of motion (1.2.1) were linear in the displacements y,. A real solid, on
the other hand, consists of atoms or ions having hard, mutually repulsive
cores. The equations of motion will now contain nonlinear (i.e., anharmonic)
terms. How do these affect the type of excitation we may find?

If the amplitudes of the phonons are small then the effects of the anhar-
monic terms will be weak, and the probleml can be treated as a system of
interacting phonons. If the atomic displacements are large, on the other
hand, then there arises a whole new family of elementary excitations
known as solitary waves or solitons. In these excitations a localized wave
of compression can travel through a solid, displacing the atoms momentarily
but then leaving them as stationary as they were before the wave arrived.

The term soliton suggests by its word ending that it is a purely quantum-
mechanical concept, but this is not the case. Solitary waves in classical
systems had been observed as long ago as 1834, but it was only when their



