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Preface

The past two decades have witnessed the onset of a surge of research in optimization.
This includes theoretical aspects, as well as algorithmic developments such as gener-
alizations of interior-point methods to a rich class of convex-optimization problems.
The development of general-purpose software tools together with insight generated by
the underlying theory have substantially enlarged the set of engineering-design problems
that can be reliably solved in an efficient manner. The engineering community has greatly
benefited from these recent advances to the point where convex optimization has now
emerged as a major signal-processing technique. On the other hand, innovative applica-
tions of convex optimization in signal processing combined with the need for robust and
efficient methods that can operate in real time have motivated the optimization commu-
nity to develop additional needed results and methods. The combined efforts in both the
optimization and signal-processing communities have led to technical breakthroughs in
a wide variety of topics due to the use of convex optimization. This includes solutions to
numerous problems previously considered intractable; recognizing and solving convex-
optimization problems that arise in applications of interest; utilizing the theory of convex
optimization to characterize and gain insight into the optimal-solution structure and to
derive performance bounds; formulating convex relaxations of difficult problems; and
developing general purpose or application-driven specific algorithms, including those
that enable large-scale optimization by exploiting the problem structure.

This book aims at providing the reader with a series of tutorials on a wide variety
of convex-optimization applications in signal processing and communications, written
by worldwide leading experts, and contributing to the diffusion of these new devel-
opments within the signal-processing community. The goal is to introduce convex
optimization to a broad signal-processing community, provide insights into how convex
optimization can be used in a variety of different contexts, and showcase some notable
successes. The topics included are automatic code generation for real-time solvers, graph-
ical models for autoregressive processes, gradient-based algorithms for signal-recovery
applications, semidefinite programming (SDP) relaxation with worst-case approximation
performance, radar waveform design via SDP, blind non-negative source separation for
image processing, modern sampling theory, robust broadband beamforming techniques,
distributed multiagent optimization for networked systems, cognitive radio systems via
game theory, and the variational-inequality approach for Nash-equilibrium solutions.



Preface

There are excellent textbooks that introduce nonlinear and convex optimization, pro-
viding the reader with all the basics on convex analysis, reformulation of optimization
problems, algorithms, and a number of insightful engineering applications. This book is
targeted at advanced graduate students, or advanced researchers that are already familiar
with the basics of convex optimization. It can be used as a textbook for an advanced grad-
uate course emphasizing applications, or as a complement to an introductory textbook
that provides up-to-date applications in engineering. It can also be used for self-study to
become acquainted with the state of-the-art in a wide variety of engineering topics.

This book contains 12 diverse chapters written by recognized leading experts world-
wide, covering a large variety of topics. Due to the diverse nature of the book chapters,
it is not possible to organize the book into thematic areas and each chapter should be
treated independently of the others. A brief account of each chapter is given next.

In Chapter 1, Mattingley and Boyd elaborate on the concept of convex optimization
in real-time embedded systems and automatic code generation. As opposed to generic
solvers that work for general classes of problems, in real-time embedded optimization the
same optimization problem is solved many times, with different data, often with a hard
real-time deadline. Within this setup, the authors propose an automatic code-generation
system that can then be compiled to yield an extremely efficient custom solver for the
problem family.

In Chapter 2, Beck and Teboulle provide a unified view of gradient-based algorithms
for possibly nonconvex and non-differentiable problems, with applications to signal
recovery. They start by rederiving the gradient method from several different perspec-
tives and suggest a modification that overcomes the slow convergence of the algorithm.
They then apply the developed framework to different image-processing problems such
as £1-based regularization, TV-based denoising, and TV-based deblurring, as well as
communication applications like source localization.

In Chapter 3, Songsiri, Dahl, and Vandenberghe consider graphical models for autore-
gressive processes. They take a parametric approach for maximum-likelihood and
maximume-entropy estimation of autoregressive models with conditional independence
constraints, which translates into a sparsity pattern on the inverse of the spectral-density
matrix. These constraints turn out to be nonconvex. To treat them, the authors propose
a relaxation which in some cases is an exact reformulation of the original problem. The
proposed methodology allows the selection of graphical models by fitting autoregressive
processes to different topologies and is illustrated in different applications.

The following three chapters deal with optimization problems closely related to SDP
and relaxation techniques.

In Chapter 4, Luo and Chang consider the SDP relaxation for several classes of
quadratic-optimization problems such as separable quadratically constrained quadratic
programs (QCQPs) and fractional QCQPs, with applications in communications and sig-
nal processing. They identify cases for which the relaxation is tight as well as classes of
quadratic-optimization problems whose relaxation provides a guaranteed, finite worst-
case approximation performance. Numerical simulations are carried out to assess the
efficacy of the SDP-relaxation approach.
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In Chapter 5, So and Ye perform a probabilistic analysis of SDP relaxations. They
consider the problem of maximum-likelihood detection for multiple-input—multiple-
output systems via SDP relaxation plus a randomization rounding procedure and study
its loss in performance. In particular, the authors derive an approximation guarantee based
on SDP weak-duality and concentration inequalities for the largest singular value of the
channel matrix. For example, for MPSK constellations, the relaxed SDP detectoris shown
to yield a constant factor approximation to the ML detector in the low signal-to-noise
ratio region. -

In Chapter 6, Huang, De Maio, and Zhang treat the problem of radar design based on
convex optimization. The design problem is formulated as a nonconvex QCQP. Using
matrix rank-1 decompositions they show that nonetheless strong duality holds for the
nonconvex QCQP radar code-design problem. Therefore, it can be solved in polynomial
time by SDP relaxation. This allows the design of optimal coded waveforms in the
presence of colored Gaussian disturbance that maximize the detection performance under
a control both on the region of achievable values for the Doppler-estimation accuracy
and on the similarity with a given radar code.

The next three chapters consider very different problems, namely, blind source
separation, modern sampling theory, and robust broadband beamforming.

In Chapter 7, Ma, Chan, Chi, and Wang consider blind non-negative source separa-
tion with applications in imaging. They approach the problem from a convex-analysis
perspective using convex-geometry concepts. It turns out that solving the blind separa-
tion problem boils down to finding the extreme points of a polyhedral set, which can be
efficiently solved by a series of linear programs. The method is based on a deterministic
property of the sources called local dominance which is satisfied in many applications
with sparse or high-contrast images. A robust method is then developed to relax the
assumption. A number of numerical simulations show the effectiveness of the method
in practice.

In Chapter %, Michaeli and Eldar provide a modern perspective on sampling theory
from an optimization point of view. Traditionally, sampling theories have addressed the
problem of perfect reconstruction of a given class of signals from their samples. Dur-
ing the last two decades, it has been recognized that these theories can be viewed in a
broader sense of projections onto appropriate subspaces. The authors introduce a comple-
mentary viewpoint on sampling based on optimization theory. They provide extensions
and generalizations of known sampling algorithms by constructing optimization prob-
lems that take into account the goodness of fit of the recovery to the samples as well
as any other prior information on the signal. A variety of formulations are considered
including aspects such as noiseless/noisy samples, different signal priors, and different
least-squares/minimax objectives.

In Chapter 9, Riibsamen, El-Keyi, Gershman, and Kirubarajan develop several
worst-case broadband beamforming techniques with improved robustness against array
manifold errors. The methods show a robustness matched to the presumed amount of
uncertainty, each of them offering a different trade-off in terms of interference suppres-
sion capability, robustness against signal self-nulling, and computational complexity.
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The authors obtain convex second-order cone programming and SDP reformulations of
the proposed beamformer designs which lead to efficient implementation.

The last three chapters deal with optimization of systems with multiple nodes. Chapter
10 takes an optimization approach with cooperative agents, whereas Chapters 11 and 12
follow a game-theoretic perspective with noncooperative nodes.

In Chapter 10, Nedic and Ozdaglar study the problem of distributed optimization and
control of multiagent networked systems. Within this setup, a network of agents has to
cooperatively optimize in a distributed way a global-objective function, whick is a com-
bination of local-objective functions, subject to local and possibly global constraints. The
authors present both classical results as well as recent advances on design and analysis
of distributed-optimization algorithms, with recent applications. Two main approaches
are considered depending on whether the global objective is separable or not; in the
former case, the classical Lagrange dual decompositions can be employed, whereas in
the latter case consensus algorithms are the fundamental building block. Practical issues
associated with the implementation of the optimization algorithms over networked sys-
tems are also considered such as delays, asynchronism, and quantization effects in the
network implementation.

In Chapter | 1, Scutari, Palomar, and Barbarossa apply the framework of game theory to
different communication systems, namely, ad-hoc networks and cognitive radio systems.
Game theory describes and analyzes scenarios with interactive decisions among different
players, with possibly conflicting goals, and is very suitable for multiuser systems where
users compete for the resources. For some problem formulations, however, game theory
may fall short, and it is then necessary to use the more general framework of variational-
inequality (VI) theory. The authors show how many resource-allocation problems in
ad-hoc networks and in the emerging field of cognitive radio networks fit naturally
either in the game-theoretical paradigm or in the more general theory of VI (further
elaborated in the following chapter). This allows the study of existence/uniqueness of
Nash-equilibrium points as well as the design of practical algorithms with provable
converge to an equilibrium.

In Chapter 12, Facchinei and Pang present a comprehensive mathematical treatment
of the Nash-equilibrium problem based on the variational-inequality and complemen-
tarity approach. They develop new results on existence of equilibria based on degree
theory, global uniqueness, local-sensitivity analysis to data variation, and iterative algo-
rithms with convergence conditions. The results are then illustrated with an application
in communication systems.
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real-time convex Voptimization

Automatic code generation for

1.1

Jacob Mattingley and Stephen Boyd

This chapter concerns the use of convex optimization in real-time embedded systems,
in areas such as signal processing, automatic control, real-time estimation, real-time
resource allocation and decision making, and fast automated trading. By “embedded”
we mean that the optimization algorithm is part of a larger, fully automated system, that
executes automatically with newly arriving data or changing conditions, and without any
human intervention or action. By “real-time” we mean that the optimization algorithm
executes much faster than a typical or generic method with a human in the loop, in
times measured in milliseconds or microseconds for small and medium size problems,
and (a few) seconds for larger problems. In real-time embedded convex optimization
the same optimization problem is solved many times, with different data, often with a
hard real-time deadline. In this chapter we propose an automatic code generation system
for real-time embedded convex optimization. Such a system scans a description of the
problem family, and performs much of the analysis and optimization of the algorithm,
such as choosing variable orderings used with sparse factorizations and determining
storage structures, at code generation time. Compiling the generated source code yields
an extremely efficient custom solver for the problem family. We describe a preliminary
implementation, built on the Python-based modeling framework CVXMOD, and give
some timing results for several examples.

Introduction

Advisory optimization

Mathematical optimization is traditionally thought of as an aid to human decision mak-
ing. For example, a tool for portfolio optimization suggests a portfolio to a human
decision maker, who possibly carries out the proposed trades. Optimization is also used
in many aspects of engineering design; in most cases, an engineer is in the decision loop,
continually reviewing the proposed designs and changing parameters in the problem
specification, if needed.

When optimization is used in an advisory role, the solution algorithms do not need
to be especially fast; an acceptable time might be a few seconds (for example, when
analyzing scenarios with a spreadsheet), or even tens of minutes or hours for very large

Convex Optimization in Signal Processing and Communication, eds. Daniel P. Palomar and Yonina C. Eldar.
Published by Cambridge University Press © Cambridge University Press, 2010.
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problems (e.g., engineering design synthesis, or scheduling). Some unreliability in the
solution methods can be tolerated, since the human decision maker will review the
proposed solutions, and hopefully catch problems.

Much effort has gone into the development of optimization algorithms for these set-
tings. For adequate performance, they must detect and exploit a generic problem structure
not known (to the algorithm) until the particular problem instance is solved. A good
generic linear programming (LP) solver, for example, can solve, on human-based time
scales, large problems in digital circuit design, supply chain management, filter design,
or automatic control. Such solvers are often coupled with optimization modeling lan-
guages, which allow the user to efficiently describe optimization problems in a high level
format. This permits the user to rapidly see the effect of new terms or constraints.

This is all based on the conceptual model of a human in the loop, with most previous
and current solver development effort focusing on scaling to large problem instances.
Not mucen effort, by contrast, goes into developing algorithms that solve small- or
medium-sized problems on fast (millisecond or microsecond) time scales, and with
great reliability.

Embedded optimization

in this chapter we focus on embedded optimization, where solving optimization problems
is part of a wider, automated algorithm. Here the optimization is deeply embedded in
the application, and no human is in the loop. In the introduction to the book Convex
Optimization | 1], Boyd and Vandenberghe state:

Arrelatively recent phenomenon opens the possibility of many other applications for mathematical
optimization. With the proliferation of computers embedded in products, we have seen a rapid
growth in embedded optimization. In these embedded applications, optimization is used to auto-
matically make real-time choices, and even carry out the associated actions, with no (or little)
human intervention or oversight. In some application areas, this blending of traditional automatic
control systems and embedded optimization is well under way; in others, it is just starting. Embed-
ded real-time optimization raises some new challenges: in particular, it requires solution methods
that are extremely reliable, and solve problems in a predictable amount of time (and memory).

In real-time embedded optimization, different instances of the same small- or medium-
size problem must be solved extremely quickly, for example, on millisecond or
microsecond time scales; in many cases the result must be obtained before a strict real-
time deadline. This is in direct contrast to generic algorithms, which take a variable
amount of time, and exit only when a certain precision has been achieved.

An early example of this kind of embedded optimization, though not on the time scales
that we envision, is model predictive control (MPC), a form of feedback control sys-
tem. Traditional (but still widely used) control schemes have relatively simple control
policies, requiring only a few basic operations like matrix-vector multiplies and lookup
table searches at each time step [2, 3]. This allows traditional control policies to be exe-
cuted rapidly, with strict time constraints and high reliability. While the control policies
themselves are simple, great effort is expended in developing and tuning (i.e., choosing
parameters in) them. By contrast, with MPC, at each step the control action is determined
by solving an optimization problem, typically a (convex) quadratic program (QP). It was
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first deployed in the late 1980s in the chemical process industry, where the hard real-time
deadlines were in the order of 15 minutes to an hour per optimization problem [4]. Since
then, we have seen huge computer processing power increases, as well as substantial
advances in algorithms, which allow MPC to be carried out on the same fast time scales
as many conventional control methods [5,6]. Still, MPC is generally not considered by
most control engineers, even though there is much evidence that MPC provises better
control performance than conventional algorithms, especially when the control inputs
are constrained.

Another example of embedded optimization is program or algorithmic trading, in
which computers initiate stock trades without human intervention. While it is hard to
find out what is used in practice due to trade secrets, we can assume that at least some of
these algorithms involve the repeated solution of linear or quadratic programs, on short,
if not sub-second, time scales. The trading algorithms that run on faster time scales are
presumably just like those used in automatic control; in other words, simple and quickly
executable. As with traditional automatic control, huge design effort is expended to
develop and tune the algorithms.

In signal processing, an algorithm is used to extract some desired signal or information
from a received noisy or corrupted signal. In off-line signal processing, the entire noisy
signal is available, and while faster processing is better, there are no hard real-time
deadlines. This is the case, for example, in the restoration of audio from wax cylinder
recordings, image enhancement, or geophysics inversion problems, where optimization
is already widely used. In on-line or real-time signal processing, the data signal sameples
arrive continuously, typically at regular time intervals, and the results must be computed
within some fixed time (typically, a fixed number of samples). In these applications, the
algorithms in use, like those in traditional control, are still relatively simple [7].

Another relevant field is communications. Here a noise-corrupted signal is received,
and a decision as to which bit string was transmitted (i.e., the decoding) must be made
within some fixed (and often small) period of time. Typical algorithms are simple, and
hence fast. Recent theoretical studies suggest that decoding methods based on convex
optimization can deliver improved performance [8—11], but the standard methods for
these problems are too slow for most practical applications. One approach has been the
development of custom solvers for communications decoding, which can execute far
faster than generic methods [12].

We also envisage real-time optimization being used in statistics and machine learning.
At the moment, most statistical analysis has a human in the loop. But we are starting
to see some real-time applications, e.g., spam filtering, web search, and automatic fault
detection. Optimization techniques, such as support vector machines (SVMs), are heavily
used in such applications, but much like in traditional control design, the optimization
problems are solved on long time scales to produce & set of model parameters or weights,
These parameters are then used in the real-time algorithm, which typically involves not
much more than computing a weighted sum of features, and so can be done quickly. We
can imagine applications where the weights are updated rapidly, using some real-time,
optimization-based method. Another setting in which an optimization problem might be
solved on a fast time scale is real-time statistical inference, in which estimates of the
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probabilities of unknown variables are formed soon after new information (in the form
of some known variables) arrives.

Finally, we note that the ideas behind real-time embedded optimization could also
be useful in more conventional situations with no real-time deadlines. The ability to
extremely rapidly solve problem instances from a specific problem family gives us the
ability to solve large numbers of similar problem instances quickly. Some example uses
of this are listed below.

o Trade-off analysis. An engineer formulating a design problem as an optimization prob-
lem solves a large number of instances of the problem, while varying the constraints,
to obtain a sampling of the optimal trade-off surface. This provides useful design
guidelines.

e Global optimization. A combinatorial optimization problem is solved using branch-
and-bound or a similar global optimization method. Such methods require the solution
of a large number of problem instances from a (typically convex, often LP) problem
family. Being able to solve each instance very quickly makes it possible to solve the
overall problem much faster.

e Monte Carlo performance analysis. With Monte Carlo simulation, we can find the
distribution of minimum cost of an optimization problem that depends on some random
parameters. These parameters (e.g., prices of some resources or demands for products)
are random with some given distribution, but will be known before the optimization
is carried out. To find the distribution of optimized cosis, we use Monte Carlo: we
generate a large number of samples of the price vector (say), and for each one we
carry out optimization to find the minimal cost. Here, too, we end up solving a large
number of instances of a given problem family.

Convex optimization

Convex optimization has many advantages over general nonlinear optimization, such as
the existence of efficient algorithms that can reliably find a globally optimal solution. A
less appreciated advantage is that algorithms for specific convex optimization problem
families can be highly robust and reliable; unlike many general purpose optimization
algorithms, they do not have parameters that must be manually tuned for particular
problem instances. Convex optimization problems are, therefore, ideally suited to real-
time embedded applications, because they can be reliably solved.

A large number of problems arising in application areas like signal processing,
control, finance, statistics and machine learning, and network operation can be cast
(exactly, or with reasonable approximations) as convex problems. In many other prob-
lems, convex optimization can provide a good heuristic for approximate solution of the
problem [ 13, 14].

In any case, much of what we say in this chapter carries over to local optimization
methods for nonconvex problems, although without the global optimality guarantee, and
with some loss in reliability. Even simple methods of extending the methods of convex
optimization can work very well in pratice. For example, we can use a basic interior-point



