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Preface

to Volumes III and IV

The first two volumes of this monograph can be regarded as an expansion
and updating of my book “Linear partial differential operators” published
in the Grundlehren series in 1963. However, volumes III and IV are almost
entirely new. In fact they are mainly devoted to the theory of linear
differential operators as it has developed after 1963. Thus the main topics
are pseudo-differential and Fourier integral operators with the underlying
symplectic geometry. The contents will be discussed in greater detail in the
introduction.

I wish to express here my gratitude to many friends and colleagues who
have contributed to this work in various ways. First I wish to mention
Richard Melrose. For a while we planned to write these volumes together,
and we spent a week in December 1980 discussing what they should
contain. Although the plan to write the books jointly was abandoned and
the contents have been modified and somewhat contracted, much remains of
our discussions then. Shmuel Agmon visited Lund in the fall of 1981 and
generously explained to me all the details of his work on long range
scattering outlined in the Goulaouic-Schwartz seminars 1978/79. His ideas
are crucial in Chapter XXX. When the amount of work involved in writing
this book was getting overwhelming Anders Melin lifted my spirits by
offering to go through the entire manuscript. His detailed and constructive
criticism has been invaluable to me; I as well as the readers of the book
owe him a great debt. Bogdan Ziemian’s careful proofreading has eliminated
numerous typographical flaws. Many others have also helped me in my
work, and I thank them all.

Some material intended for this monograph has already been included in
various papers of mine. Usually it has been necessary to rewrite these
papers completely for the book, but selected passages have been kept from a
few of them. I wish to thank the following publishers holding the copyright
for granting permission to do so, namely:

Marcel Dekker, Inc. for parts of [41] included in Section 17.2;

Princeton University Press for parts of [38] included in Chapter XXVII;
D. Reidel Publishing Company for parts of [40] included in Section 26.4;
John Wiley & Sons Inc. for parts of [39] included in Chapter XVIIL
(Here [N] refers to Hormander [N] in the bibliography.)

Finally I wish to thank the Springer-Verlag for all the support I have
received during my work on this monograph.

Djursholm in November, 1984 Lars Hormander
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Introduction

to Volumes III and IV

A great variety of techniques have been developed during the long history
of the theory of linear differential equations with variable coefficients. In
this book we shall concentrate on those which have dominated during the
latest phase. As a reminder that other earlier techniques are sometimes
available and that they may occasionally be preferable, we have devoted the
introductory Chapter XVII mainly to such methods in the theory of second
order differential equations. Apart from that Volumes III and IV are in-
tended to develop systematically, with typical applications, the three basic
tools in the recent theory. These are the theory of pseudo-differential oper-
ators (Chapter XVIII), Fourier integral operators and Lagrangian distri-
butions (Chapter XXV), and the underlying symplectic geometry (Chapter
XXI). In the choice of applications we have been motivated mainly by the
historical development. In addition we have devoted considerable space and
effort to questions where these tools have proved their worth by giving
fairly complete answers.

Pseudo-differential operators developed from the theory of singular in-
tegral operators. In spite of a long tradition these played a very modest role
in the theory of differential equations until the appearance of Calderén’s
uniqueness theorem at the end of the 1950’s and the Atiyah-Singer-Bott
index theorems in the early 1960’s. Thus we have devoted Chapter XXVIII
and Chapters XIX, XX to these topics. The early work of Petrowsky on
hyperbolic operators might be considered as a precursor of pseudo-differen-
tial operator theory. In Chapter XXIII we discuss the Cauchy problem
using the improvements of the even older energy integral method given by.
the calculus of pseudo-differential operators. )

The connections between geometrical and wave optics, classical me-
chanics and quantum mechanics, have a long tradition consisting in part of
heuristic arguments. These ideas were developed more systematically by a
number of people in the 1960’s and early 1970’s. Chapter XXV is devoted to
the theory of Fourier integral operators which emerged from this. One of its
first applications was to the study of asymptotic properties of eigenvalues
(eigenfunctions) of higher order elliptic operators. It is therefore discussed in
Chapter XXIX here together with a number of later developments which
give beautiful proofs of the power of the tool. The study by Lax of the
propagation of singularities of solutions to the Cauchy problem was one of



2 Introduction

the forerunners of the theory. We prove such results using only pseudo-
differential operators in Chapter XXIIL In Chapter XXVI the propagation
of singularities is discussed at great length for operators of principal type. It
is the only known approach to general existence theorems for such oper-
ators. The completeness of the results obtained has been the reason for the
inclusion of this chapter and the following one on subelliptic operators. In
addition to Fourier integral operators one needs a fair amount of symplectic
geometry then. This topic, discussed in Chapter XXI, has deep roots in
classical mechanics but is now equally indispensible in the theory of linear
differential operators. Additional symplectic geometry is provided in the
discussion of the mixed problem in Chapter XXIV, which is otherwise
based only on pseudo-differential operator theory. The same is true of
Chapter XXX which is devoted to long range scattering theory. There too
the geometry is a perfect guide to the analytical constructs required.

The most conspicuous omission in these books is perhaps the study of
analytic singularities and existence theory for hyperfunction solutions. This
would have required another volume - and another author. Very little is
also included concerning operators with double characteristics apart from a
discussion of hypoellipticity in Chapter XXII. The reason for this is in part
shortage of space, in part the fact that few questions concerning such operators
have so far obtained complete answers although the total volume of results
is large. Finally, we have mainly discussed single operators acting on scalar
functions or occasionally determined systems. The extensive work done on
for example first order systems of vector fields has not been covered at all.



Chapter XXV. Lagrangian Distributions
and Fourier Integral Operators

Summary

In Section 18.2 we introduced the space of conormal distributions associated
with a submanifold Y of a manifold X. This is a natural extension of the
classical notion of multiple layer on Y. All such distributions have their
wave front sets in the normal bundle of Y which is a conic Lagrangian
manifold. In Section25.1 we generalize the notion of conormal distribution
by defining the space of Lagrangian distributions associated with an arbi-
trary conic Lagrangian A< T*(X)\0. This is the space of distributions u
such that there is a fixed bound for the order of P, ... Pyu for any sequence
of first order pseudo-differential operators B,..., B, with principal symbols
vanishing on A. This implies that WF(u)c A. Symbols can be defined for
Lagrangian distributions in much the same way as for conormal distri-
butions. The only essential difference is that the symbols obtained are half
densities on the Lagrangian tensored with the Maslov bundle of Sec-
tion 21.6.

In Section 25.2 we introduce the notion of Fourier integral operator; this
is the class of operators having Lagrangian distribution kernels. As in the
discussion of wave front sets in Section8.2 (see also Section21.2) it is
preferable to associate a Fourier integral operator with the canonical re-
lation < (T*(X)~0)x(T*(Y)\0) obtained by twisting the Lagrangian with
reflection in the zero section of T*(Y). We prove that the adjoint of a
Fourier integral operator associated with the canonical relation C is as-
sociated with the inverse of C, and that the composition of operators
associated with C, and C, is associated with the composition C, o C, when
the compositions are defined. Precise results on continuity in the H , spaces
are proved in Section25.3 when the canonical relation is the graph of a
canonical transformation. We also study in some detail the case where the
canonical relation projects into T*(X) and T*(Y) with only fold type of
singularities.

The real valued C* functions vanishing on a Lagrangian < T*(X)~0 form
an ideal with dim X generators which is closed under Poisson brackets. We
define general Lagrangian ideals by taking complex valued functions in-
stead. With suitable local coordinates in X they always have a local system
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of generators of the form
x;—0H({)/0&;, j=1,...,n,

just as in the real case. The ideal is called positive if Im H 0. This condition
is crucial in the analysis and turns out to have an invariant meaning.
Distributions associated with positive Lagrangian ideals are studied in Sec-
tion25.4. The corresponding Fourier integral operators are discussed in
Section 25.5. The results are completely parallel to those of Sections25.1,
25.2 and 25.3 apart from the fact that for the sake of brevity we do not
extend the notion of principal symbol.

25.1. Lagrangian Distributions

According to Definition 18.2.6 the space I™(X, Y; E) of conormal distribution
sections of the vector bundle E is the largest subspace of °°H:“_‘,,,_,,,4)(X , E),
n=dim X, which is left invariant by all first order differential operators
tangent to the submanifold Y. It follows from Theorem 18.2.12 that it is even
invariant under all first order pseudo-differential operators from E to E with
principal symbol vanishing on the conormal bundle of Y. The definition is
therefore applicable with no change to any Lagrangian manifold:

Definition 25.1.1. Let ¥ be a C*® manifold and A= T*(X)~0 a C* closed
conic Lagrangian submanifold, E a C® vector bundle over X. Then the
space I™(X, A;E) of Lagrangian distribution sections of E, of order m, is
defined as the set of all ue2'(X, E) such that

(25.1.1) L,...Lyue®H™, . . (X,E)

for all N and all properly supported L;e Y!(X;E, E) with principal symbols
L%, vanishing on A.

The following lemma allows us to localize the study of I™(X, A; E).

Lemma25.1.2. If uel™(X,A;E) then WF(u)cA, and Auel™X,A;E) if
Ae¥Y°(X;E,E). Conversely, uel™(X,A;E) if for every (xq,&0)€ T*(X)~\0 one
can find Ae¥°(X;E,E) properly supported and non-characteristic at (x,,&,)
such that Auel™(X, A;E).

Proof. If (x4,&,)¢ A we can choose L,,...,Ly in (25.1.1) non-characteristic in
a conic neighborhood I' and conclude that ueHy in I' if s<N—m—n/4.
Hence WF(u)nI'=0. To prove the second statement we observe that

L,..LyAu=L,...Ly_,ALyu—L,...Ly_,[A,Ly]u.
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Here [A,Ly]eY°(X;E,E) and Lyuel™(X,A;E) by Definition25.1.1. By in-
duction with respect to N we conclude that

Ll s LNAMEOOH:O_CM_,./M(X’ E)

for all properly supported Ae ¥°(X;E, E) and L ¥!(X;E, E) with principal
symbols vanishing on A. To prove the converse we choose B according to
Lemma 18.1.24 so that (xq,&,)¢ WF(BA—1I). Thus (x4,¢,)¢ WF(BAu—u),
and since BAuel™(X, A;E) it follows that

Ll ...LNuEwH:O_c,,._,./‘;) at (XO’SZO)

if L,,...,Ly satisfy the conditions in Definition25.1.1. Hence (25.1.1) is
fulfilled so uelI™(X, A;E).

Remark. So far we have not used that A is Lagrangian. However, if (25.1.1)
is fulfilled we have [L; L J"ue*H*, _, 4(X,E) for any N, so WF(u) is
contained in the characteristic set of [Lj, L,] by the first part of the proof.
Hence WF(u) cannot contain an arbitrary point in A unless A is involutive.
The hypothesis that A is Lagrangian means that A is minimal with this
property, or alternatively that we have a maximal set of conditions (25.1.1)
which do not imply that u is smooth.

Lemma 25.1.2 reduces the study of distributions ueI™(X, A; E) to the case
where WF(u) is contained in a small closed conic neighborhood I of some
point (x,,&,)eA, and supp u is close to x,. In that case Definition 25.1.1 is
applicable even if A is just defined in an open conic neighborhood I of I},
for only the restriction of the principal symbol of L; to I is relevant. More
generally, given a conic Lagrangian submanifold A of the open cone I3
< T*(X)~ 0 we shall say that ueI™(X, A; E) at (x,,,)el; if there is an open
conic neighborhood Iy I of (x4, &,) such that Auel™(X, A;E) for all prop-
erly supported Ae ¥° with WF(A)<Iy; it suffices to know this for some such
A which is non-characteristic at (x,, &,).

In view of Theorem21.2.16 we may thus assume now that X =R" and
that A={(H'(¢),&); eR"\0} where H is a real valued function in
C*(R"~\0) which is homogeneous of degree 1. We may also assume that E
is the trivial bundle, which is then omitted from the notation.

Proposition25.1.3. If uelf, (R", A), A={(H'(),&); E€R"\0}, then (&)
=e~HOy(&), |&]|>1, where veS™ "4(R"). Conversely, the inverse Fourier

transform of e~*"v is in I™(R", A) if veS™"4(R").

Proof. Choose ye Cg'(IR") equal to 1 in a neighborhood of 0 and define h by
h=yH, where Hy=(1—x)H. Then H,—he%¥ (see the proof of Theo-
rem7.1.22), so Hy—he% Thus heS' has the principal symbol H, so it
suffices to prove the result with H replaced by h. Set h(&)=0h(£)/0¢;. The
operator h;D) is convolution with the inverse Fourier transform of h; so it
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is properly supported. Hence
(25.1.2) DP[1(x;—hy(D)'ue®H _p_na if |Bl=lal
for [x;—h;(D),D,]J=id; so commuting the factors D we obtain a sum of
products of operators of the form (x;—h;(D))D, to which (25.1.1) is applica-
ble. Recalling the definition of “H_,,_, 4, we obtain

|8 TT(—D;=hfQra@)?ds < C,R*™*"9;  R>1, |pl=]al.

R/2<|&| <2R
With the notation (&) =e~ @ p(¢) this means that
[ [EPD* @) dE < CaR* /Y,

R/2<|€|<2R

If vg(&)=v(RE)/R™~"* then
| ID*vg(d)*d¢sC,
+<l§l<2

which by Lemma 7.6.3 gives uniform bounds for D*vg; when |£|=1, that is,
bounds for |D*v(&)| (1 +|&|)*~™*+"4 The argument can be reversed to prove
the last statement in the proposition, for the passage from the operators
(x;—h;(D)) D, to the general operators in (25.1.1) can be made by the argument
preceding Theorem 18.2.7.

A slight modification of the proof gives precise information about the
smoothness of elements in I™. We state the result directly in a global form.

Theorem 25.1.4. If Uel™(X, A) and UeH ,,, at (x4,{,)€A, then Uel*(X, A) at
(x0,&0) if p+so+n/4>0.

Proof. Choose Ae ¥°(X) properly supported, non-characteristic at (x,, &), s0
that AUeH,,. By Lemma25.1.2 we have AUeI™ We can choose A4 so that
WF(AU) is in a small conic neighborhood of (x,,&,). Writing u=AU we
conclude that it is sufficient to prove that uel” if ueH, , and u satisfies the
hypotheses in Proposition 25.1.3. With the notation used there we have

J IDCuwR@©IPdES Ca, [ |ur(E)fdE S CR™Msotmn/S),

i<lel<2 i<lel<2
Let |¢|=1 and set Vg (1) =vg(é+n/R®)R~"%* where 6>0. Then

[ ID* Vg d)?dn< C, R, [ |V ()>dnS CR™2otm*nid)

Inl<1 Inl<1t
Now we use the Sobolev inequality
|D? V(0)12§C,;I l] (”Z ID** 2V (n)|*+1V(m)?)dn
n<1 laj]=s

where s>n/2. This is somewhat more general than (7.6.6) but follows from
the same proof. Taking s so large that sé>s,+m+n/4 we obtain

DV ((0) < C'R~tomsmis),



25.1. Lagrangian Distributions 7

hence
ID‘vR(»f)l < C'Rom/2+ |ﬂ|)-(so+m+nl4)’ |€| =1,

|D”v(§)l < C'lﬂé(nlz+Iﬂ|)—(so+n12+lﬂl)’ |&|>1.

For every B we can choose & so that the exponent is smaller than u—n/4
—|Bl, and then we obtain veS*~"*, hence uel”.

We shall now prove that elements in I™(X, A) can also be represented by
means of arbitrary phase functions ¢ parametrizing A in the sense of
Definition 21.2.15. At first we assume that ¢ is non-degenerate.

Proposition 25.1.5. Let ¢(x,0) be a non-degenerate phase function in an open
conic neighborhood of (xq,0,)€eR"x(RY~\0) which parametrizes the
Lagrangian manifold A in a neighborhood of (x4,&0); &o=¢%(x0,0,)
B(x0,00)=0. If aeS™+"-2N/4R"xR"™) has support in the interior of a
sufficiently small conic neighborhood I' of (x,,0,), then the oscillatory integral

(25.1.3) u(x)=(2m) ="+ 2N/ [ o100 g(x 6)d6
defines a distribution uel7, . (R", A). If A={(H'(£),&)} as in Proposition25.1.3
then (for |&|>1)
(25.1.4) O (&) —(2n)"% a(x, 0) e™*°® |det §| ~teS™ 4!
where (x, 0) is determined by ¢4(x,0)=0, @' (x,0)=¢, and
¢ — (¢ix:x ¢:x:8) .
6x (-1}

Here a(x,0) is interpreted as O if there is no such point in I'. e'®®§(¢) is
polyhomogeneous if a is. Conversely, every uelI™(X, A) with WF(u) in a small
conic neighborhood of (x,,&,) can, modulo C*, be written in the form (25.1.3).

In the proof we shall need an extension of Lemma 18.1.18.

Lemma 25.1.6. Let I} C R™ x (R \ 0), j = 1,2, be open conic sets and let
V: I, - I, be a C* proper map commuting with multiplication by positive scalars
in the second variable. If aeS™(R™ x R"?) has support in the interior of a
compactly based cone cI, then aoyeS™(R™ xRN") if the composition is
defined as 0 outside I.

Proof. The support of aoy belongs to a compactly based cone =I; where
Y (x, &)=(y,n) implies |¢]/C <|n| < C|&|. The hypothesis on a means that
D5 ,a(y,tn)| S C,t™, 1/C<|n|<C.
Since ao Y (x,t&)=al(.,t.)o Y(x, &) by the homogeneity of y, we obtain
IDge(a o Y)x,28)| < Cot™, €] =1,

by using Leibniz’ rule. This proves the lemma.
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Proof of Proposition25.1.5. By hypothesis ¢,(xq,00)=%,#0, so the oscil-
latory integral (25.1.3) is well defined. u has compact support if I' has a
compact base. We shall use the method of stationary phase to evaluate

(25.1.5) €M@ (&)= (2m)=n+ 2M4 [[ i@+ HO -8 g (x, B) dx d.

The exponent has a critical point if
Pu(x,0)=¢,  ¢=0,
which by hypothesis means that (x,£)eA, hence that x=H'(£). The critical
point is non-degenerate. In fact, the maps
C={(x,0); p,=0}3(x,0)—(x,¢.)eA and A3(x, )¢

are diffeomorphisms. Hence C > (x,8) — ¢, is a diffeomorphism, so d¢’ =d¢,
=0 implies dx=d0=0. The matrix @ is therefore non-singular. If we divide
(multiply) the first n (last N) rows (columns) by |6] we see that detd is
homogeneous in 6 of degree n—N. Hence a(x,0)|det®|~* is in S"~"* in a
conic neighborhood of C. By Lemma 25.1.6 this remains true for the restric-
tion to C regarded as a function of ¢.

It follows from Theorem 7.7.1 that there is a constant C such that for
any N '
(25.1.6) |f e'@=O == g(x, 0)dx| < CpllE| +16)) ",
if 16> C|¢&] or [&]>Cl6.

In fact, (¢(x,0)—<x,&))/(1€]+]0])=f(x) is homogeneous in (&, ) of degree O
and bounded in C*. If (x,0)esupp a we have

£z (¢ = C, 18D/l +16) = if 16]/1¢] is small,
[fGNZ(C,101=[EDNEI+10))> C,/2  if |&]/16] is small.
We can therefore apply Theorem 7.7.1 with w=|¢&|+|6.

Choose yeCP(RM\0) equal to 1 when 1/C<|0]<C. By (25.1.6) the
difference between 7% §(¢) and

U(C) =(2n)—(n+2N)/4 ” el(@(x.0)+H(&) - (x.83) X(9/|f|) a(x, 0)dxd9
is rapidly decreasing as £ —»oo. Set |&|=t, &/t =n and replace 0 by t6. Then
U({) =(2n)—("+2N)/4 ”‘ eit@(x,0+ ""’"“'””x(@)a(x,tﬁ)t" dxdé.

Here the exponent has only one critical point in the support of the inte-
grand and it is defined by ¢y(x,0)=0, ¢.(x, f)=n. At that point

P(x,0)=<0, dy(x,0)>=0,  <{x,n)>=<H'(n),n>=H(n)

so the critical value is 0. Using (7.7.13) we obtain an asymptotic expansion
of U. Since y =1 at the critical point, the leading term is

(27)"* a(x, tO) ¢ N —m2 gril4sen® | det P~ ¥
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that is, the term displayed in (25.1.4) in view of the homogeneity of det @
already pointed out. The k™ term will contain another factor t=* and a
linear combination of derivatives of a(x,t#) with respect to x, 6, so it is in
S§m-m4-k In view of Proposition18.1.4 it follows that we have an asymptotic
series in the sense of Proposition 18.1.3, and this completes the proof of the
first part of the proposition.

To prove the converse it is by Proposition 25.1.3 sufficient to consider an
element uel™(X,A) with v=ie#eS™~"* having support in a small conic
neighborhood of ¢,. Choose a C*> map (x,0)—{/(x,0)elR"~\0 in a conic
neighborhood of (x,, f),) such that y is homogeneous of degree 1 and ¥ (x, 0)
=7c¢/cx when ¢¢/c0=0. Let

ao(x, 6) — (2 7[) —n/4l, o w(_\,. 0) o= ni/4sgn® |d€t ¢|iesm+1n— 2N)/4

near C, and define u, by (25.1.3) with a replaced by a,. From the first part
of the proposition it follows then that u—u,el™ ', Repeating the argument
gives a sequence a;eS™*"~*M/*~J such that u—ug—...—u;el™ =" if u; is
defined by (25.1.3) with a replaced by a;. If a is an asymptotic sum of the
series Y a; it follows that (25.1.3) is valid modulo C™. The proof is complete.

We shall now examine what must be changed in the preceding argument
if ¢ is just a clean phase function. We still have (25.1.6) so only U(¢) is
important. However, ¢(x,0)+ H(n)—<{x,n) does not satisfy the hypotheses
in Theorem 7.7.6. We do know that (locally)

C={(x.0): d¢(x,0)/00=0)

is a manifold of dimension e+n, where ¢ is the excess, and that the
composed map C—-A—-R": (x,0)—(x,¢.)—¢. has surjective differential,
hence a fiber C, of dimension e over n where x=H'(n). The critical points of
& (x,0)+ H(n)—<x,n) are defined by ¢,=0, ¢, =n, that is, (x,0)eC,, and d¢,
=0, d¢, =0 precisely along the tangent space of C,. Note that we have
fixed upper and lower bounds for [6] on C, since |¢,|=1. We can split the 6
variables into two groups @', 6" so that the number of 6" variables is e and
the projection C,3(x, 8)—0" has bijective differential. Then d¢,=0, d¢’, =0,
d0" =0 implies dx=d0=0. Thus the Hessian of ¢(x,0)+ H(n)—{x,n) with
respect to (x,8) is not 0, so the critical point on C, when 6" is fixed is non-
degenerate. If we change the definition of @ to

= (¢‘ ¢‘”)
¢8'x 4)9‘9'
an application of Theorem 7.7.6 to the integral U(£) with respect to the

n + N — e variables x, 6’ gives, when we integrate with respect to 8" after-
wards,

MO (&) — (2m)e /2 [ (N +e=mI2 g(x, 1) /480 | det |~ dB" S HI2 -1,
Cn
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Note that the order has increased by e/2 since the stationary phase eva/lzu:?-
tion is applied to e variables less. For the same reason a factor (27)** is
lost. If we introduce t0 as a new variable, noting that det @ is homogeneous

of degree n— N +e now, we obtain

Proposition 25.1.5". Let ¢(x,0) be a clean phase function with excess e in an
open conic neighborhood of (x0,00)eR" x (R¥~\0) which parametrizes the
Lagrangian manifold A in a neighborhood of (x4,&0); &o=x(x0,0,),
Py(xo,00)=0. If aeS™*+-2N-2eN4(R" x R") has support in the interior of a
sufficiently small conic neighborhood I' of (x4, 0,) then the oscillatory integral

(25.1.3) u(x)=(2m)~n+2N-2014 [ 5l g(x, )6

defines a distribution uelf,  (R", A). If A={(H'({),{)} as in Proposition
25.1.3 then
(25.1.4)  €HOG(E)—Q2m)"* | a(x, B) e™/**5"® |det §|~*dH eS™ 4L,
Cy
Here C,={(x,0); ¢g(x,0)=0, ¢, (x,0)=¢}; 6=(6",0") is a splitting of the 6
variables in two groups such that C,3(x,0)— 0" has bijective differential; and
o= (47’3:', ¢"")
0'x 00
Conversely, modulo C* every uel™(X, A) with WF(u) in a small conic neigh-
borhood of (x, &,) can be written in the form (25.1.3).

Remark. 1If feC*(Y) has a critical point at y,eY then |det f"(y,)* trans-
forms as a density at y,. This is why in the standard stationary phase
formula the density in the integrand is transformed to a scalar in the
asymptotic expansion. If on the other hand f is critical on a submanifold Z
<Y and is non-degenerate in transversal directions, then the square root of
the determinant of the Hessian in transversal planes defines a density in the
normal bundle. Dividing a density in Y by it gives a density on Z. This
confirms the invariant meaning of the integrand in (25.1.4)".

There is no difficulty in performing a change of local coordinates x in
the representation (25.1.3) of an element in I™(X, A), so Proposition 25.1.3
contains all that is needed to define a principal symbol isomorphism for I"™
extending Theorem18.2.11. However, it is instructive to establish first a
theorem on limits of elements in I™ which connects the definitions in this
section with those given in the linear case in Section 21.6.

Proposition25.1.7. Let uel?, (R" A), A={(H'({),¢), EeR"\0}, and set &'
=@2m)"*v, veS" " If YyeC®(R") is real valued, Y(x,)=0, W'(xo)=Ey %0,
(xg,&o)EA, then as t - + o i

(25.1.7) 172" 2(ue =) (xo + x /1) — v(tEo) "M 0¥ (1) = 0 in D,



