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PART ONE

INTRODUCTION

What is a software architecture? What is it good for? How does it come to be?
What effect does its existence have? These are the questions we answer in Part L.

Chapter 1 deals with a technical perspective on software architecture. We
define it and relate it to system and enterprise architectures. We discuss how the
architecture can be represented in different views to emphasize different perspec-
tives on the architecture. We define patterns and discuss what makes a “good”
architecture.

In Chapter 2, we discuss the uses of an architecture. You may be surprised
that we can find so many—ranging from a vehicle for communication among
stakeholders to a blueprint for implementation, to the carrier of the system’s
quality attributes. We also discuss how the architecture provides a reasoned basis
for schedules and how it provides the foundation for training new members on a
team.

Finally, in Chapter 3, we discuss the various contexts in which a software ar-
chitecture exists. It exists in a technical context, in a project life-cycle context, in
a business context, and in a professional context. Each of these contexts defines a
role for the software architecture to play, or an influence on it. These impacts and
influences define the Architecture Influence Cycle.
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What Is Software
Architecture?

Good judgment is usually the result of experience.
And experience is frequently the result of bad
Jjudgment. But to learn from the experience of

others requires those who have the experience to
share the knowledge with those who follow.
—Barry LePatner

Writing (on our part) and reading (on your part) a book about software architec-
ture, which distills the experience of many people, presupposes that

1. having a software architecture is important to the successful development
of a software system and

2. there is a sufficient, and sufficiently generalizable, body of knowledge
about software architecture to fill up a book.

One purpose of this book is to convince you that both of these assumptions are
true, and once you are convinced, give you a basic knowledge so that you can
apply it yourself.

Software systems are constructed to satisfy organizations’ business goals.
The architecture is a bridge between those (often abstract) business goals and
the final (concrete) resulting system. While the path from abstract goals to con-
crete systems can be complex, the good news is that software architectures can be
designed, analyzed, documented, and implemented using known techniques that
will support the achievement of these business and mission goals. The complex-
ity can be tamed, made tractable.

These, then, are the topics for this book: the design, analysis, documenta-
tion, and implementation of architectures. We will also examine the influences,
principally in the form of business goals and quality attributes, which inform
these activities.



4 PartOne Introduction 1—What Is Software Architecture?

In this chapter we will focus on architecture strictly from a software engineer-
ing point of view. That is, we will explore the value that a software architecture
brings to a development project. (Later chapters will take a business and organi-
zational perspective.)

1.1 What Software Architecture Is and What it Isn’t

There are many definitions of software architecture, easily discoverable with
a web search, but the one we like is this one:

The software architecture of a system is the set of structures needed to
reason about the system, which comprise software elements, relations
among them, and properties of both.

This definition stands in contrast to other definitions that talk about the sys-
tem’s “early” or “major” design decisions. While it is true that many architectural
decisions are made early, not all are—especially in Agile or spiral-development
projects. It’s also true that very many decisions are made early that are not archi-
tectural. Also, it’s hard to look at a decision and tell whether or not it’s “major.”
Sometimes only time will tell. And since writing down an architecture is one of
the architect’s most important obligations, we need to know now which decisions
an architecture comprises.

Structures, on the other hand, are fairly easy to identify in software, and they
form a powerful tool for system design.

Let us look at some of the implications of our definition.

Architecture Is a Set of Software Structures

This is the first and most obvious implication of our definition. A structure is sim-
ply a set of elements held together by a relation. Software systems are composed
of many structures, and no single structure holds claim to being ke architecture.
There are three categories of architectural structures, which will play an import-
ant role in the design, documentation, and analysis of architectures:

1. First, some structures partition systems into implementation units, which
in this book we call modules. Modules are assigned specific computational
responsibilities, and are the basis of work assignments for programming
teams (Team A works on the database, Team B works on the business rules,
Team C works on the user interface, etc.). In large projects, these elements
(modules) are subdivided for assignment to subteams. For example, the da-
tabase for a large enterprise resource planning (ERP) implementation might
be so complex that its implementation is split into many parts. The structure
that captures that decomposition is a kind of module structure, the module
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decomposition structure in fact. Another kind of module structure emerges
as an output of object-oriented analysis and design—class diagrams. If you
aggregate your modules into layers, you’ve created another (and very use-
ful) module structure. Module structures are static structures, in that they
focus on the way the system’s functionality is divided up and assigned to
implementation teams.

2.  Other structures are dynamic, meaning that they focus on the way the el-
ements interact with each other at runtime to carry out the system’s func-
tions. Suppose the system is to be built as a set of services. The services,
the infrastructure they interact with, and the synchronization and interaction
relations among them form another kind of structure often used to describe
a system. These services are made up of (compiled from) the programs in
the various implementation units that we just described. In this book we
will call runtime structures component-and-connector (C&C) structures.
The term component is overloaded in software engineering. In our use, a
component is always a runtime entity.

3. A third kind of structure describes the mapping from software structures
to the system’s organizational, developmental, installation, and execution
environments. For example, modules are assigned to teams to develop, and
assigned to places in a file structure for implementation, integration, and
testing. Components are deployed onto hardware in order to execute. These
mappings are called allocation structures.

Although software comprises an endless supply of structures, not all of them
are architectural. For example, the set of lines of source code that contain the let-
ter “z,” ordered by increasing length from shortest to longest, is a software struc-
ture. But it’s not a very interesting one, nor is it architectural. A structure is archi-
tectural if it supports reasoning about the system and the system’s properties. The
reasoning should be about an attribute of the system that is important to some
stakeholder. These include functionality achieved by the system, the availability
of the system in the face of faults, the difficulty of making specific changes to the
system, the responsiveness of the system to user requests, and many others. We
will spend a great deal of time in this book on the relationship between architec-
ture and quality attributes like these.

Thus, the set of architectural structures is not fixed or limited. What is archi-
tectural is what is useful in your context for your system.

Architecture Is an Abstraction

Because architecture consists of structures and structures consist of elements'
and relations, it follows that an architecture comprises software elements and

1. In this book we use the term “clement” when we mean either 2 module or a component, and don’t
want to distinguish.



