PEARSON

A %R %ﬁ

(5530 RZEMAR)

- Len Bass
~ Paul Clements g
Rick Kazman

Ql ‘ ya .-
Mgt
A W
i
el
A
e

ATERFHMAL






Original edition, entitled SOFTWARE ARCHITECTURE IN PRACTICE, 3E, 9780321815736
by BASS, LEN; CLEMENTS, PAUL; KAZMAN, RICK, published by Pearson Education,
Inc, publishing as Addison-Wesley Professional, Copyright © 2013 Pearson

Education, Inc..

All rights reserved. No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording
or by any information storage retrieval system, without permission from Pearson

Education, Inc..
China edition published by PEARSON EDUCATION ASIA LTD., and TSINGHUA

UNIVERSITY PRESS LIMITED Copyright © 2013.

This edition is manufactured in the People’s Republic of China, and is authorized for
sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macau SAR).

URFHEARKMEREN (FEFETEEFE. R MSNITRENTEETHX) HEL1T.

AR HEWAH Pearson Education(34 1 & AR & )N HHIFE, TIREZETEMNE.
MR, BRRLR. BNEEIREBIE: 010-62782989 13701121933
EETMBEZERERZEIES EFE: 01-2012-8971

BB/ H (CIP) iR

HAHIZESCE S 3 BR = Software Architecture in Practice: #30/(36) EL#fi(Bass, L.), ()%
1% (Clements, P.), (32)¥12% 8 (Kazman, R.)E. —ZEA. —b5: HEAZ MR, 2013

ISBN 978-7-302-31293-2

[. @ Il Qb @5z @Fl~ [ ORHFE—HEL V. OTPILS2
o AR A B 508 CIP B3 £ F-(2013)58 013981 5

WIEHE. A
HE®W. HE2
RERX: Adl=
HAEMS . FLK

HERR T HHEXFH R
M dt: http://www. tup. com. en, http://www. wgbook. com
My fib. JEEWEEREETRE A & BB 4. 100084
#HEH . 010-62770175 BB M. 010-62786544
BRSEERS: 010-62776969, c-service@tup. tsinghua. edu. cn
B & K f%:010-62772015, zhiliang@ tup. tsinghua. edu. cn
® % T #. htp://www. tup. com. cn,010-62791865

: SR EEENE

s ST HEEITAERAT

: 2EFEHIE

: 159mm X 236mm Bl 3.38.75  F #.790 FF

: 2013F 2 HE 3R Bl k. 2013 4F 2 A 551 WEIR)

: 1~4000

: 79.00 oo

=

S &
BN Mo b ok

HESFHE RS

+
Ba
s
Jdf

: 050690-01



Contents

PART ONE
CHAPTER 1

CHAPTER 2

Preface Xv
Reader’s Guide XVii

Acknowledgments Xix

INTRODUCTION 1

What Is Software Architecture? 3

1.1 What Software Architecture Is and What It
Isn’t 4

1.2 Architectural Structures and Views 9
1.3 Architectural Patterns 18

1.4 What Makes a “Good” Architecture? 19
1.5 Summary 21

1.6 For Further Reading 22

1.7 Discussion Questions 23

Why Is Software Architecture Important? 25

2.1 Inhibiting or Enabling a System’s Quality
Attributes 26

2.2 Reasoning About and Managing
Change 27

2.3 Predicting System Qualities 28

2.4 Enhancing Communication among
Stakeholders 29

2.5 Carrying Early Design Decisions 31

2.6 Defining Constraints on an
Implementation 32

2.7 Influencing the Organizational Structure 33
2.8 Enabling Evolutionary Prototyping 33



vi Contents

CHAPTER 3

PART TWO
CHAPTER 4

2.9 Improving Cost and Schedule Estimates

2.10 Supplying a Transferable, Reusable
Model 35

2.11 Allowing Incorporation of Independently
Developed Components 35

2.12 Restricting the Vocabulary of Design
Alternatives 36

2.13 Providing a Basis for Training 37
2.14 Summary 37

2.15 For Further Reading 38

2.16 Discussion Questions 38

The Many Contexts of Software
Architecture 39

3.1 Architecture in a Technical Context 40

3.2 Architecture in a Project Life-Cycle
Context 44

3.3 Architecture in a Business Context 49
3.4 Architecture in a Professional Context 51
3.5 Stakeholders 52

3.6 How Is Architecture Influenced? 56

3.7 What Do Architectures Influence? 57
3.8 Summary 59

3.9 For Further Reading 59

3.10 Discussion Questions 60

QUALITY ATTRIBUTES 61

Understanding Quality Attributes 63
4.1 Architecture and Requirements 64
4.2 Functionality 65

4.3 Quality Attribute Considerations 65

4.4 Specifying Quality Attribute
Requirements 68

4.5 Achieving Quality Attributes through
Tactics 70

4.6 Guiding Quality Design Decisions 72
4.7 Summary 76

34



Contents vii

4.8 For Further Reading 77
4.9 Discussion Questions 77

CHAPTER 5 Availability 79
5.1 Availability General Scenario 85
5.2 Tactics for Availability 87
5.3 A Design Checklist for Availability 96
5.4 Summary 98
5.5 For Further Reading 99
5.6 Discussion Questions 100

CHAPTER 6 Interoperability 103
6.1 Interoperability General Scenario 107
6.2 Tactics for Interoperability 110
6.3 A Design Checklist for Interoperability 114
6.4 Summary 115
6.5 For Further Reading 116
6.6 Discussion Questions 116

CHAPTER 7 Madifiability 117
7.1 Modifiability General Scenario 119
7.2 Tactics for Modifiability 121
7.3 A Design Checklist for Modifiability 125
7.4 Summary 128
7.5 For Further Reading 128
7.6 Discussion Questions 128

CHAPTER 8 Performance 131
8.1 Performance General Scenario 132
8.2 Tactics for Performance 135
8.3 A Design Checklist for Performance 142
8.4 Summary 145
8.5 For Further Reading 145
8.6 Discussion Questions 145

CHAPTER 9 Security 147
9.1 Security General Scenario 148
9.2 Tactics for Security 150



vifi Contents

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

9.3 A Design Checklist for Security 154
9.4 Summary 156

9.5 For Further Reading 157

9.6 Discussion Questions 158

Testability 159

10.1 Testability General Scenario 162
10.2 Tactics for Testability 164

10.3 A Design Checklist for Testability 169
10.4 Summary 172

10.5 For Further Reading 172

10.6 Discussion Questions 173

Usability 175

11.1 Usability General Scenario 176
11.2 Tactics for Usability 177

11.3 A Design Checklist for Usability 181
11.4 Summary 183

11.5 For Further Reading 183

11.6 Discussion Questions 183

Other Quality Attributes 185
12.1 Other Important Quality Attributes 185
12.2 Other Categories of Quality Attributes

12.3 Software Quality Attributes and System
Quality Attributes 190

12.4 Using Standard Lists of Quality Attributes—
or Not 193

12.5 Dealing with “X-ability”: Bringing a New
Quality Attribute into the Fold 196

12.6 For Further Reading 200

12.7 Discussion Questions 201

Architectural Tactics and Patterns 203
13.1 Architectural Patterns 204
13.2 Overview of the Patterns Catalog 205

13.3 Relationships between Tactics and
Patterns 238



CHAPTER 14

PART THREE

CHAPTER 15

CHAPTER 16

Contents ix

13.4 Using Tactics Together 242
13.5 Summary 247

13.6 For Further Reading 248
13.7 Discussion Questions 249

Quality Attribute Modeling and Analysis 251

14.1 Modeling Architectures to Enable Quality
Attribute Analysis 252

14.2 Quality Attribute Checklists 260

14.3 Thought Experiments and
Back-of-the-Envelope Analysis 262

14.4 Experiments, Simulations, and
Prototypes 264

14.5 Analysis at Different Stages of the Life
Cycle 265

14.6 Summary 266
14.7 For Further Reading 267
14.8 Discussion Questions 269

ARCHITECTURE IN THE LIFE
CYCLE 271

Architecture in Agile Projects 275

15.1 How Much Architecture? 277

15.2 Agility and Architecture Methods 281
15.3 A Brief Example of Agile Architecting 283
15.4 Guidelines for the Agile Architect 286
15.5 Summary 287

15.6 For Further Reading 288

15.7 Discussion Questions 289

Architecture and Requirements 291

16.1 Gathering ASRs from Requirements
Documents 292

16.2 Gathering ASRs by Interviewing
Stakeholders 294

16.3 Gathering ASRs by Understanding the
Business Goals 296



X Contents

CHAPTER 17

CHAPTER 18

CHAPTER 19

16.4 Capturing ASRs in a Utility Tree 304
16.5 Tying the Methods Together 308
16.6 Summary 308

16.7 For Further Reading 309

16.8 Discussion Questions 309

Designing an Architecture 311

17.1 Design Strategy 311

17.2 The Attribute-Driven Design Method 316
17.3 The Steps of ADD 318

17.4 Summary 325

17.5 For Further Reading 325

17.6 Discussion Questions 326

Documenting Software Architectures 327

18.1 Uses and Audiences for Architecture
Documentation 328

18.2 Notations for Architecture
Documentation 329

18.3 Views 331

18.4 Choosing the Views 341

18.5 Combining Views 343

18.6 Building the Documentation Package 345
18.7 Documenting Behavior 351

18.8 Architecture Documentation and Quality
Attributes 354

18.9 Documenting Architectures That Change
Faster Than You Can Document Them 355

18.10 Documenting Architecture in an Agile
Development Project 356

18.11 Summary 359

18.12 For Further Reading 360

18.13 Discussion Questions 360
Architecture, Implementation, and

Testing 363

19.1 Architecture and Implementation 363
19.2 Architecture and Testing 370



CHAPTER 20

CHAPTER 21

CHAPTER 22

Contents xi

19.3 Summary 376
19.4 For Further Reading 376
19.5 Discussion Questions 377

Architecture Reconstruction and
Conformance 379

20.1 Architecture Reconstruction Process
20.2 Raw View Extraction 382

20.3 Database Construction 386
20.4 View Fusion 388

20.5 Architecture Analysis: Finding
Violations 389

20.6 Guidelines 392

20.7 Summary 393

20.8 For Further Reading 394
20.9 Discussion Questions 395

Architecture Evaluation 397
21.1 Evaluation Factors 397

21.2 The Architecture Tradeoff Analysis
Method 400

21.3 Lightweight Architecture Evaluation
21.4 Summary 417

21.5 For Further Reading 417

21.6 Discussion Questions 418

Management and Governance 419
22.1 Planning 420

22.2 Organizing 422

22.3 Implementing 427

22.4 Measuring 429

22.5 Governance 430

22.6 Summary 432

22.7 For Further Reading 432

22.8 Discussion Questions 433

381

415



xii Contents

PART FOUR

CHAPTER 23

CHAPTER 24

CHAPTER 25

ARCHITECTURE AND
BUSINESS 435

Economic Analysis of Architectures 437
23.1 Decision-Making Context 438
23.2 The Basis for the Economic Analyses 439

23.3 Putting Theory into Practice:
The CBAM 442

23.4 Case Study: The NASA ECS Project 450
23.5 Summary 457

23.6 For Further Reading 458

23.7 Discussion Questions 458

Architecture Competence 459

24.1 Competence of Individuals: Duties, Skills, and
Knowledge of Architects 460

24.2 Competence of a Software Architecture
Organization 467

24.3 Summary 475
24.4 For Further Reading 475
24.5 Discussion Questions 477

Architecture and Software Product Lines 479

25.1 An Example of Product Line
Variability 482

25.2 What Makes a Software Product Line
Work? 483

25.3 Product Line Scope 486
25.4 The Quality Attribute of Variability 488

25.5 The Role of a Product Line
Architecture 488

25.6 Variation Mechanisms 490

25.7 Evaluating a Product Line
Architecture 493

25.8 Key Software Product Line Issues 494
25.9 Summary 497

25.10 For Further Reading 498

25.11 Discussion Questions 498



PART FIVE
CHAPTER 26

CHAPTER 27

CHAPTER 28

Contents xiii

THE BRAVE NEW WORLD 501

Architecture in the Cloud 503
26.1 Basic Cloud Definitions 504

26.2 Service Models and Deployment
Options 505

26.3 Economic Justification 506

26.4 Base Mechanisms 508

26.5 Sample Technologies 514

26.6 Architecting in a Cloud Environment 520
26.7 Summary 524

26.8 For Further Reading 524

26.9 Discussion Questions 525

Architectures for the Edge 527

27.1 The Ecosystem of Edge-Dominant
Systems 528

27.2 Changes to the Software Development Life
Cycle 530

27.3 Implications for Architecture 531

27.4 Implications of the Metropolis Model 533
27.5 Summary 537

27.6 For Further Reading 538

27.7 Discussion Questions 538

Epilogue 541

References 547
About the Authors 561
Index 563



&

r

o

PART ONE

INTRODUCTION

What is a software architecture? What is it good for? How does it come to be?
What effect does its existence have? These are the questions we answer in Part L.

Chapter 1 deals with a technical perspective on software architecture. We
define it and relate it to system and enterprise architectures. We discuss how the
architecture can be represented in different views to emphasize different perspec-
tives on the architecture. We define patterns and discuss what makes a “good”
architecture.

In Chapter 2, we discuss the uses of an architecture. You may be surprised
that we can find so many—ranging from a vehicle for communication among
stakeholders to a blueprint for implementation, to the carrier of the system’s
quality attributes. We also discuss how the architecture provides a reasoned basis
for schedules and how it provides the foundation for training new members on a
team.

Finally, in Chapter 3, we discuss the various contexts in which a software ar-
chitecture exists. It exists in a technical context, in a project life-cycle context, in
a business context, and in a professional context. Each of these contexts defines a
role for the software architecture to play, or an influence on it. These impacts and
influences define the Architecture Influence Cycle.






2

«

What Is Software
Architecture?

Good judgment is usually the result of experience.
And experience is frequently the result of bad
Jjudgment. But to learn from the experience of

others requires those who have the experience to
share the knowledge with those who follow.
—Barry LePatner

Writing (on our part) and reading (on your part) a book about software architec-
ture, which distills the experience of many people, presupposes that

1. having a software architecture is important to the successful development
of a software system and

2. there is a sufficient, and sufficiently generalizable, body of knowledge
about software architecture to fill up a book.

One purpose of this book is to convince you that both of these assumptions are
true, and once you are convinced, give you a basic knowledge so that you can
apply it yourself.

Software systems are constructed to satisfy organizations’ business goals.
The architecture is a bridge between those (often abstract) business goals and
the final (concrete) resulting system. While the path from abstract goals to con-
crete systems can be complex, the good news is that software architectures can be
designed, analyzed, documented, and implemented using known techniques that
will support the achievement of these business and mission goals. The complex-
ity can be tamed, made tractable.

These, then, are the topics for this book: the design, analysis, documenta-
tion, and implementation of architectures. We will also examine the influences,
principally in the form of business goals and quality attributes, which inform
these activities.



4 PartOne Introduction 1—What Is Software Architecture?

In this chapter we will focus on architecture strictly from a software engineer-
ing point of view. That is, we will explore the value that a software architecture
brings to a development project. (Later chapters will take a business and organi-
zational perspective.)

1.1 What Software Architecture Is and What it Isn’t

There are many definitions of software architecture, easily discoverable with
a web search, but the one we like is this one:

The software architecture of a system is the set of structures needed to
reason about the system, which comprise software elements, relations
among them, and properties of both.

This definition stands in contrast to other definitions that talk about the sys-
tem’s “early” or “major” design decisions. While it is true that many architectural
decisions are made early, not all are—especially in Agile or spiral-development
projects. It’s also true that very many decisions are made early that are not archi-
tectural. Also, it’s hard to look at a decision and tell whether or not it’s “major.”
Sometimes only time will tell. And since writing down an architecture is one of
the architect’s most important obligations, we need to know now which decisions
an architecture comprises.

Structures, on the other hand, are fairly easy to identify in software, and they
form a powerful tool for system design.

Let us look at some of the implications of our definition.

Architecture Is a Set of Software Structures

This is the first and most obvious implication of our definition. A structure is sim-
ply a set of elements held together by a relation. Software systems are composed
of many structures, and no single structure holds claim to being ke architecture.
There are three categories of architectural structures, which will play an import-
ant role in the design, documentation, and analysis of architectures:

1. First, some structures partition systems into implementation units, which
in this book we call modules. Modules are assigned specific computational
responsibilities, and are the basis of work assignments for programming
teams (Team A works on the database, Team B works on the business rules,
Team C works on the user interface, etc.). In large projects, these elements
(modules) are subdivided for assignment to subteams. For example, the da-
tabase for a large enterprise resource planning (ERP) implementation might
be so complex that its implementation is split into many parts. The structure
that captures that decomposition is a kind of module structure, the module



1.1 What Software Architecture Is and What It isn't 5

decomposition structure in fact. Another kind of module structure emerges
as an output of object-oriented analysis and design—class diagrams. If you
aggregate your modules into layers, you’ve created another (and very use-
ful) module structure. Module structures are static structures, in that they
focus on the way the system’s functionality is divided up and assigned to
implementation teams.

2.  Other structures are dynamic, meaning that they focus on the way the el-
ements interact with each other at runtime to carry out the system’s func-
tions. Suppose the system is to be built as a set of services. The services,
the infrastructure they interact with, and the synchronization and interaction
relations among them form another kind of structure often used to describe
a system. These services are made up of (compiled from) the programs in
the various implementation units that we just described. In this book we
will call runtime structures component-and-connector (C&C) structures.
The term component is overloaded in software engineering. In our use, a
component is always a runtime entity.

3. A third kind of structure describes the mapping from software structures
to the system’s organizational, developmental, installation, and execution
environments. For example, modules are assigned to teams to develop, and
assigned to places in a file structure for implementation, integration, and
testing. Components are deployed onto hardware in order to execute. These
mappings are called allocation structures.

Although software comprises an endless supply of structures, not all of them
are architectural. For example, the set of lines of source code that contain the let-
ter “z,” ordered by increasing length from shortest to longest, is a software struc-
ture. But it’s not a very interesting one, nor is it architectural. A structure is archi-
tectural if it supports reasoning about the system and the system’s properties. The
reasoning should be about an attribute of the system that is important to some
stakeholder. These include functionality achieved by the system, the availability
of the system in the face of faults, the difficulty of making specific changes to the
system, the responsiveness of the system to user requests, and many others. We
will spend a great deal of time in this book on the relationship between architec-
ture and quality attributes like these.

Thus, the set of architectural structures is not fixed or limited. What is archi-
tectural is what is useful in your context for your system.

Architecture Is an Abstraction

Because architecture consists of structures and structures consist of elements'
and relations, it follows that an architecture comprises software elements and

1. In this book we use the term “clement” when we mean either 2 module or a component, and don’t
want to distinguish.



