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Preface to the Fourth Edition

In this edition two new chapters, 9 and 10, on mathematical finance are
added. They are written by Dr. Farid AitSahlia, ancien éléve, who has
taught such a course and worked on the research staff of several industrial
and financial institutions.

The new text begins with a meticulous account of the uncommon vocab-
ulary and syntax of the financial world; its manifold options and actions,
with consequent expectations and variations, in the marketplace. These are
then expounded in clear, precise mathematical terms and treated by the
methods of probability developed in the earlier chapters. Numerous graded
and motivated examples and exercises are supplied to illustrate the appli-
cability of the fundamental concepts and techniques to concrete financial
problems. For the reader whose main interest is in finance, only a portion
of the first eight chapters is a “prerequisite” for the study of the last two
chapters. Further specific references may be scanned from the topics listed
in the Index, then pursued in more detail.

I have taken this opportunity to fill a gap in Section 8.1 and to expand
Appendix 3 to include a useful proposition on martingale stopped at an
optional time. The latter notion plays a basic role in more advanced finan-
cial and other disciplines. However, the level of our compendium remains
elementary, as befitting the title and scheme of this textbook. We have also
included some up-to-date financial episodes to enliven, for the beginners,
the stratified atmosphere of “strictly business”. We are indebted to Ruth
Williams, who read a draft of the new chapters with valuable suggestions
for improvement; to Bernard Bru and Marc Barbut for information on the
Pareto-Lévy laws originally designed for income distributions. It is hoped
that a readable summary of this renowned work may be found in the new
Appendix 4.

Kai Lai Chung
August 3, 2002

xi



Prologue to Introduction to
Mathematical Finance

The two new chapters are self-contained introductions to the topics of
mean-variance optimization and option pricing theory. The former covers
a subject that is sometimes labeled “modern portfolio theory” and that is
widely used by money managers employed by large financial institutions.
To read this chapter, one only needs an elementary knowledge of prob-
ability concepts and a modest familiarity with calculus. Also included is
an introductory discussion on stable laws in an applied context, an of-
ten neglected topic in elementary probability and finance texts. The latter
chapter lays the foundations for option pricing theory, a subject that has
fueled the development of finance into an advanced mathematical discipline
as attested by the many recently published books on the subject. It is an
initiation to martingale pricing theory, the mathematical expression of the
so-called “arbitrage pricing theory”, in the context of the binomial random
walk. Despite its simplicity, this model captures the flavors of many ad-
vanced theoretical issues. It is often used in practice as a benchmark for
the approximate pricing of complex financial instruments.

I would like to thank Professor Kai Lai Chung for inviting me to write
the new material for the fourth edition. I would also like to thank my wife
Unnur for her support during this rewarding experience.

Farid AitSahlia
November 1, 2002
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Set

1.1. Sample sets

These days schoolchildren are taught about sets. A second grader® was
asked to name “the set of girls in his class.” This can be done by a complete
list such as:

“Nancy, Florence, Sally, Judy, Ann, Barbara, ... ”

A problem arises when there are duplicates. To distinguish between two
Barbaras one must indicate their family names or call them B; and Bs.
The same member cannot be counted twice in a set.

The notion of a set is common in all mathematics. For instance, in
geometry one talks about “the set of points which are equidistant from a
given point.” This is called a circle. In algebra one talks about “the set of
integers which have no other divisors except 1 and itself.” This is called
the set of prime numbers. In calculus the domain of definition of a function
is a set of numbers, e.g., the interval (a,b); so is the range of a function if
you remember what it means.

In probability theory the notion of a set plays a more fundamental
role. Furthermore we are interested in very general kinds of sets as well as
specific concrete ones. To begin with the latter kind, consider the following
examples:

(a) a bushel of apples;
(b) fifty-five cancer patients under a certain medical treatment;

*My son Daniel.



2 Set

(c) all the students in a college;

(d) all the oxygen molecules in a given container;
(e) all possible outcomes when six dice are rolled;
(f) all points on a target board.

Let us consider at the same time the following “smaller” sets:

!

a'} the rotten apples in that bushel;

(a')
(b') those patients who respond positively to the treatment;
(c')

(d’) those molecules that are traveling upwards;

the mathematics majors of that college;

(¢') those cases when the six dice show different faces;
(f') the points in a little area called the “bull’s-eye” on the board.

We shall set up a mathematical model for these and many more such
examples that may come to mind, namely we shall abstract and generalize
our intuitive notion of “a bunch of things.” First we call the things points,
then we call the bunch a space; we prefix them by the word “sample” to
distinguish these terms from other usages, and also to allude to their sta-
tistical origin. Thus a sample point is the abstraction of an apple, a cancer
patient, a student, a molecule, a possible chance outcome, or an ordinary
geometrical point. The sample space consists of a number of sample points
and is just a name for the totality or aggregate of them all. Any one of the
examples (a)—(f) above can be taken to be a sample space, but so also may
any one of the smaller sets in (a’)-(f'). What we choose to call a space [a
universe| is a relative matter.

Let us then fix a sample space to be denoted by €, the capital Greek
letter omega. It may contain any number of points, possibly infinite but
at least one. (As you have probably found out before, mathematics can be
very pedantic!) Any of these points may be denoted by w, the small Greek
letter omega, to be distinguished from one another by various devices such
as adding subscripts or dashes (as in the case of the two Barbaras if we do
not know their family names), thus w;,w2,w’,... . Any partial collection
of the points is a subset of 2, and since we have fixed Q we will just call
it a set. In extreme cases a set may be  itself or the empty set, which
has no point in it. You may be surprised to hear that the empty set is an
important entity and is given a special symbol @. The number of points in
a set S will be called its size and denoted by |S|; thus it is a nonnegative
integer or co. In particular |@] = 0.

A particular set S is well defined if it is possible to tell whether any
given point belongs to it or not. These two cases are denoted respectively

by

wesS; w¢s.



1.2 Operations with sets 3

Thus a set is determined by a specified rule of membership. For instance, the
sets in (a’)—(f') are well defined up to the limitations of verbal descriptions.
One can always quibble about the meaning of words such as “a rotten
apple,” or attempt to be funny by observing, for instance, that when dice
are rolled on a pavement some of them may disappear into the sewer. Some
people of a pseudo-philosophical turn of mind get a lot of mileage out of
such caveats, but we will not indulge in them here. Now, one sure way of
specifying a rule to determine a set is to enumerate all its members, namely
to make a complete list as the second grader did. But this may be tedious if
not impossible. For example, it will be shown in §3.1 that the size of the set
in (e) is equal to 6% = 46656. Can you give a quick guess as to how many
pages of a book like this will be needed just to record all these possibilities
of a mere throw of six dice? On the other hand, it can be described in a
systematic and unmistakable way as the set of all ordered 6-tuples of the
form below: :

(51, §2, 83, S4, 55,86)

where each of the symbols s;, 1 < 7 < 6, may be any of the numbers 1, 2,
3, 4, 5, 6. This is a good illustration of mathematics being economy of
thought (and printing space).

If every point of A belongs to B, then A is contained or included in B
and is a subset of B, while B is a superset of A. We write this in one of
the two ways below:

ACB, B>A.

Two sets are identical if they contain exactly the same points, and then we
write

A=B.

Another way to say this is: A = B if and only if A C B and B C A. This
may sound unnecessarily roundabout to you, but is often the only way
to check that two given sets are really identical. It is not always easy to
identify two sets defined in different ways. Do you know for example that
the set of even integers is identical with the set of all solutions z of the
equation sin(rz/2) = 0? We shall soon give some examples of showing the
identity of sets by the roundabout method.

1.2. Operations with sets

We learn about sets by operating on them, just as we learn about num-
bers by operating on them. In the latter case we also say that we compute
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with numbers: add, subtract, multiply, and so on. These operations per-
formed on given numbers produce other numbers, which are called their
sum, difference, product, etc. In the same way, operations performed on
sets produce other sets with new names. We are now going to discuss some
of these and the laws governing them.

Complement. The complement of a set A is denoted by A° and is the set
of points that do not belong to A. Remember we are talking only about
points in a fixed Q! We write this symbolically as follows:

A= {w|w¢ A},

which reads: “A€ is the set of w that does not belong to A.” In particular
2¢ = () and 0°¢ = Q. The operation has the property that if it is performed
twice in succession on A, we get A back:

(A9)° = A. (1.2.1)

Unijon. The union AU B of two sets A and B is the set of points that
belong to at least one of them. In symbols:

AUB={w|we Aorwe B}

where “or” means “and/or” in pedantic [legal] style and will always be used
in this sense.

Intersection. The intersection A N B of two sets A and B is the set of
points that belong to both of them. In symbols:

ANB={w|we A and w e B}.

AC

Figure 1
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We hold the truth of the following laws as self-evident:

Commutative Law. AUB=BUA, ANB=BnNA.

Associative Law. (AUB)UC =AU (BUC),
(ANB)NC=AN(BNC).

But observe that these relations are instances of identity of sets mentioned
above, and are subject to proof. They should be compared, but not con-
fused, with analogous laws for sum and product of numbers:
a+b=b+a, axb=bxa
(a+b)+c=a+(b+c), (axbxc=ax(bxc).

Brackets are needed to indicate the order in which the operations are to be
performed. Because of the associative laws, however, we can write

AUuBUC, AnBnNnCND
without brackets. But a string of symbols like A U B N C is ambiguous,

therefore not defined; indeed (AU B)NC is not identical with AU (BNC).
You should be able to settle this easily by a picture.

\
>

N
\\\%.
N\

S

P

Q

{AUB) NC AU (BNC)

Figure 2
The next pair of distributive laws connects the two operations as follows:

(AUB)NC = (ANC)U(BNC):; (D)
(ANB)UC = (AUC)N (BUC). (Da)



(AUB)INC = (ANC)U(BNC) {(ANB)UC = {AUCI(BUC)

Figure 3

Several remarks are in order. First, the analogy with arithmetic carries over
to (Dl )2

(a+b) xc=(axc)+(bxc)
but breaks down in (D2):
(axby+c#(a+c)x(b+e)

Of course, the alert reader will have observed that the analogy breaks down
already at an earlier stage, for

A=AUA=ANA;

but the only number a satisfying the relation a +a = a is 0; while there
are exactly two numbers satisfying a X a = a, namely 0 and 1.

Second, you have probably already discovered the use of diagrams to
prove or disprove assertions about sets. It is also a good practice to see the
truth of such formulas as (D;) and (D2) by well-chosen examples. Suppose
then that

A = inexpensive things, B = really good things,
C = food [edible things].

Then (AUB)NC means “(inexpensive or really good) food,” while (ANCHU
(BN C) means “(inexpensive food) or (really good food).” So they are the
same thing all right. This does not amount to a proof, as one swallow does
not make a summer, but if one is convinced that whatever logical structure
or thinking process involved above in no way depends on the precise nature
of the three things A, B, and C, so much so that they can be anything,
then one has in fact landed a general proof. Now it is interesting that the
same example applied to (D2) somehow does not make it equally obvious




1.3 Various relations 7

(at least to the author). Why? Perhaps because some patterns of logic are
in more common use in our everyday experience than others.

This last remark becomes more significant if one notices an obvious
duality between the two distributive laws. Each can be obtained from the
other by switching the two symbols U and N. Indeed each can be deduced
from the other by making use of this duality (Exercise 11).

Finally, since (D3) comes less naturally to the intuitive mind, we will
avail ourselves of this opportunity to demonstrate the roundabout method
of identifying sets mentioned above by giving a rigorous proof of the for-
mula. According to this method, we must show: (i) each point on the left
side of (D2) belongs to the right side; (ii) each point on the right side of
(D2) belongs to the left side.

(i) Suppose w belongs to the left side of (D3), then it belongs either
to ANBortoC.Ifwe An B, then w € A, hence w € AU C;
similarly w € B U C. Therefore w belongs to the right side of (D).
On the other hand, ifw € C, thenw € AUC and w € BUC and
we finish as before.

(ii) Suppose w belongs to the right side of (D), then w may or may
not belong to C, and the trick is to consider these two alternatives.
If w € C, then it certainly belongs to the left side of (D). On the
other hand, if w ¢ C, then since it belongs to AUC, it must belong
to A; similarly it must belong to B. Hence it belongs to AN B, and
so to the left side of (D2). Q.E.D.

1.3. Various relations

The three operations so far defined: complement, union, and intersection
obey two more laws called De Morgan’s laws:

(AU B)® = A°N B, (C1)
(AN B) = A°U B°. (Ca)

They are dual in the same sense as (D;) and (D) are. Let us check these
by our previous example. If A = inexpensive, and B = really good, then
clearly (A U B)¢ = not inexpensive nor really good, namely high-priced
junk, which is the same as A° N B¢ = inexpensive and not really good.
Similarly we can check (Cz).

Logically, we can deduce either (C;) or (Cs) from the other; let us show
it one way. Suppose then (C,) is true, then since A and B are arbitrary
sets we can substitute their complements and get

(A° U BS)® = (A°)° N (B°) = AN B (1.3.1)
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A
= 4

(ANB)¢ = A° U B®
Figure 4

where we have also used (1.2.1) for the second equation. Now taking the
complements of the first and third sets in (1.3.1) and using (1.2.1) again
we get

AU B® = (AN B)°.

This is (Cz). Q.E.D.

It follows from De Morgan’s laws that if we have complementation, then
either union or intersection can be expressed in terms of the other. Thus
we have

ANB = (AU B°)¢,

AUB = (A°n B9,
and sb there is redundancy among the three operations. On the other hand,
it is impossible to express complementation by means of the other two

although there is a magic symbol from which all three can be derived

(Exercise 14). It is convenient to define some other operations, as we now
do.

Difference. The set 4 \ B is the set of points that belong to 4 and (but)
not to B. In symbols:

A\B=ANB ={w|we Aand w ¢ B).

This operation is neither commutative nor associative. Let us find a coun-
terexamnple to the associative law, namely, to find some A, B, C for which

(A\B)\C # A\ (B\C). (1.3.2)



