ATLAS OF CLOUDS OVER THE QINGHAI-XIZANG PLATEAU 者蔵客家マ図

The Institute of Meteorological Science of Qinghai Province

青海省气象科学研究所

ACADEMIC PRESS, INC.

版

社

Orlando San Diego New York Austin London Montreal Sydney Tokyo Toronto

SCIENCE PRESS Beijing, China

ATLAS OF CLOUDS OVER THE QINGHAI-XIZANG PLATEAU

The Institute of Meteorological Science of Qinghai Province 青海省气象科学研究所

Beijing The People's Republic of China

ACADEMIC PRESS, INC. Harcourt Brace Jovanovich, Publishers Orlando San Diego New York Austin London Montreal Sydney Tokyo Toronto 学术出版社 Responsible Editor Xu Yigang

责任编辑 许贻刚

ATLAS OF CLOUDS OVER THE OINGHAI-XIZANG PLATEAU

青藏高原云图

The Institute of Meteorological Science of Qinghai Province

青海省气象科学研究所

Copyright © 1986 by Science Press and Academic Press, Inc.

Published by Science Press, Beijing, China

Distribution rights throughout the world, excluding the People's Republic of China, granted to Academic Press, Inc., U.S.A.

Printed in Hong Kong

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

First published 1986

ISBN 0-12-767665-1 Science Press Book No. 5320-102 Library of Congress Card Catalog Number: 86-71737

学 术 出 版 社 美国佛罗里达奥兰多

中华商务联合印刷(香港)有限公司印刷 中华人民共和国国内发行 新华书店北京发行所发行 各地新华书店经售 1986年10月第一版 1986年10月第一次印刷

> 统一书号: 13031·3392 本社书号: 5320·13-15

Satellite image for the main part of the Qinghai-Xizang Plateau and principal sites of cloud photographing. (By kind permission of Messrs. Zhang Qingshan and Liu Cheng of the Satellite Center of the State Meteorological Administration) (国家气象局卫星中心张青山、刘诚提供图片) 青藏高原主体地区地形图及主要拍摄点

1

	•	Photographing spot	拍技	支点
	A	Wudaoliang	五道	宜梁
]	B	Tuotuohe	托打	E河
	С	Amdo	安	多
]	D	Nagqu	那	曲
]	E	Lhasa	拉	萨
	F	Nyingchi	林	芝

G	Nagarze			很十	< 1
Η	Lhunze			隆	子
Ι	Nangxian			朗	县
J	Mainling			米	林
K	Zhongba			仲	巴
L	Saga (Gy' gya)	萨	嘎	(加	加)
M	Lhaze			拉	孜

N	Xigaze	日喀	·则
Р	Tingri	定	日
R	Pagri	巾白	里
S	Yadong	亚	东
1	Mount Qomolangma	珠穆朗玛	马峰
$\overline{\nabla}$	Gêladaindong	各拉丹	冬

FOREWORD

The unique Qinghai-Xizang Plateau is an entity more than four kilometres above sea level on the average and more than two million square kilometres in area. This gigantic plateau can aptly be compared to a mainstay in the westerly jet streams. It not only confronts them, but also forces them to cross over it, or to branch off and flow past it. The difference in atmospheric thermodynamics between the Plateau and the surrounding air at same level frequently results in the discrepancy of temperature between them, thus the spatial distribution of air pressure is affected, and a seasonal thermo-circulation of atmosphere is formed. Therefore, the various synoptic systems in the general atmospheric circulation are complicated by the presence of the Qinghai-Xizang Plateau. As the Plateau covers a huge area, where the elevation, topograph and character of ground surface differ from place to place, there exists a great distinction in weather and climate in its various parts.

The above factors have created many weather and climate features unique to the Qinghai-Xizang Plateau; these features have aroused much interest of meteorologists in China and abroad. As a result, many field studies have been conducted, monographs written, and valuable contributions made. However, so far little has been done on the clouds over the Plateau.

Under the auspices of the Commission of Sciences and Technology of Qinghai Province and the Meteorological Bureau of Qinghai Province, and under the guidance of the Institute of Meteorological Science of Qinghai Province, a special research group working on Atlas of Clouds over the Qinghai-Xizang Plateau was formed in 1981. The members of the group studied for three years clouds across the Plateau except the district of Ngari (northwestern part of the Plateau), traveling a distance of 40,000 kilometres. A great number of cloud photos, data of cloud heights measured by laser radar, panoramic photos of cloud and films on the motions of clouds were made available; some of the material of certain principal cloudsource areas was examined more than twice.

In addition to general surveys, in order to take pictures of the evolutions of different cloud patterns at the same spot and orographic clouds, many places with typical topography, or near the cloud-source mountainous areas were chosen for the photographing. Among them were the Ngoring Lake (having a wide water surface), Darlag and Warima (in the Huanghe River valley), Maji Snowberg (one of the cloud-forming sources), Dawu pastureland (of a broad terrain), Tanggula Range (the source region of the Changjiang River), Nagqu (in the northern part of the Plateau), Lhasa and Nyingchi (in the valley of the Yarlung Zangbo River), Pagri of Yadong and Chuangmuda of Tingri District (on the northern slope of the Himalayas) and Mt. Jiazela (in the west of the Plateau). The authors spent about one month at each spot to take these photos. That was why numerous photos and films of various weather systems showing remarkable peculiarities of the Qinghai-Xizang Plateau were obtained. From over 3000 photos, more than 500 were chosen and presented to a meeting held at Xining of Qinghai Province in August of 1984

for assessment by specialists.

For a better understanding of the clouds over the Qinghai-Xizang Plateau by meteorologists and researchers of related disciplines at home and abroad, we have compiled this **book** – Atlas of Clouds over the Qinghai-*Kizang Plateau*. The aim of this Atlas is to furnish reference materials for weather observation and forecast, and to provide general and special examples and statistical results of clouds over the Plateau for academicians engaged in meteorological education, aeronautical navigation, cloud physics, dynamics of cumulus; micro-scale synoptic meteorology, aeroclimatology and meteorology of the Qinghai-Xizang Plateau.

Contained in this Atlas are 277 photos (152 groups), which focus on clouds peculiar to the Qinghai-Xizang Plateau, or reflect the characteristics of its weather and climate. As many examples showing geneses and evolution processes of special clouds and orographic clouds as possible are included. Some of the clouds which are frequently seen over plains but are rare over the Qinghai-Xizang Plateau, such as Altostratus opacus and Cirrostratus nebulosus, are also included as patterns which just occasionally occur over the Plateau. From photos of clouds belonging to the same genera, those taken at different places and in different seasons and presenting certain features, are chosen. Efforts have been made to illustrate or to establish a fact or a phenomenon about a cloud with a series or a group of photos. Furthermore, a group of panoramic photos of the evolutions of cloud systems reflecting the whole sky conditions and clouds accompanied by optical phenomena such as halo, corona and morning or evening glow are given.

Owing to the limitations of field surveys, it was impossible to collect necessary data for some of the peculiar clouds, and to get a better idea of their genesis mechanisms. However, photos of such clouds are also included in the Atlas as they may suggest new facts or phenomena.

The height of a cloud layer is directly correlated with the weather system and atmospheric stratification. The authors measured the cloud heights with China-made laser nephoscopes Model GGU3-1. The data thus obtained are contained in the comments on cloud plates and the tables of cloud heights. The laser nephoscope was calibrated by the manufacturer before and after the operation; it was also co-calibrated with radar to ensure normal performance during investigations.

In order to explore the background of the geneses or evolutions of some clouds, the authors widely analysed the synoptic charts, surface synoptic maps T-lg P diagrams, data of upper winds, etc., which comprised some more than 300 examples, and calculated the physical variables of some examples. For comparison, as many as 20 items of statistics, covering a period of 10 years and obtained from 123 representative stations of various physical regions throughout the country were analysed. It is on the basis of all these studies that A General Survey of Cloud over the Qinghai-Xizang Plateau was written.

The members of the research group of *Atlas of Clouds over the Qinghai-Xizang Plateau* worked under very difficult circumstances such as lack of oxygen, hardly endurable climate, sparsely populated wildernesses and bad communication facilities. There were altogether 14 people who did the field work. The chief of the group was Wu Hexuan; the members were Wan Zhengyi (female), Tang Lanquan, Li Xuanyou and Chen Jian. Taking part in the work at one time or another were Shan Jingwu, Wu Shoutian, Lin Zihao, Ge

Yuehua, Wu Zhenhuai, Hu Qingyun, He Yong, Ren Weidong and Su Liang.

Data analysers were Wu Hexuan and Wan Zhengyi; data calculators were Wu Zhen and Yu Lingdi.

The authors acknowledge their indebtedness to the heads and staff members of the Meteorological Bureau of Xizang Autonomous Region, Xigaze Meteorological Observatory, Pagri Meteorological Station. The 3rd company of P.L.A. at Tingri and other observatories and stations in Qinghai and Xizang for their warm-hearted help.

The authors also express their deep thanks to Professors Tao Shiyan, Gao Youxi, Shu Jiaxin, Yi Shiming, Yao Zhensheng, Tian Mingyuan, Associate Professors Hou Hongsen, Guo Enming, Engineers Lu Dongwen, Tong Letian, Yang Changxin, Xu Huanbin and Li Shutan for their encouragements and suggestions given in the course of work. We give our sincere appreciation to Professor Wang Pengfei for his distinguished guidance in the whole work and his kind help with the writing of the commentaries of the Atlas and to Associate Professors Sheng Chengyu for his valuable suggestions and translation, and Gao Guopei who did the translation.

Finally, the authors express their gratitude to all those who have cared for and supported this work.

> Wu Hexuan February, 1986

举世无双的青藏高原,是平均海拔超 过四公里、面积超过二百万平方公里的高 大实体,它象西风急流里的一个"中流砥 柱",既承受着急流的冲击,也迫使急流翻 越或分支绕流。青藏高原与周围同高度大 气热力性质的差异,往往造成温度的不一 致,从而影响气压的空间分布并形成季节 性热力环流。因此,大气环流中的各种天 气系统由于青藏高原的存在,就变得十分 复杂。青藏高原面积广大,其海拔高度、 地形、地表面的性质,各有不同,所以在 高原上各地的天气并不一致,各地气候也 有明显差异。

前

言

由于上述原因, 青藏高原具有独特的 天气气候特征, 为国内、外气象学家注目, 已有不少现场考察报告、专题研究论著, 对此作出了显著的贡献。但是, 有关青藏 高原云的研究, 至今仍然做得很少。

在青海省科学技术委员会、青海省气 象局大力支持下,青海省气象科学研究所 领导下,1981年组成了"青藏高原云图" 专题科研组,对青藏高原的云进行考察。 历时三年,行程逾四万公里,除阿里地区 未能实地考察外,对重点云区曾作了两次 以上的复验性考察,取得了一批云态照片、 激光云高数据、全天摄影云图和云的一些 动态电影资料。

为了拍摄不同云状在同一地点的连续

变化和地形云,除普查性考察外,在重点 考察云区中,选取了代表各类地形和生云 山区附近为定点拍摄点,如较大水面的鄂 陵湖;黄河流域的达日、哇日玛;局地造 云源地之一的玛积雪山;地形开阔的大武 牧场;长江源头的唐古拉山;藏北高平原 的那曲;雅鲁藏布江流域的拉萨、林芝; 喜马拉雅山脉北侧的亚东帕里、定日区仓 木达;高原西部山区的加泽拉山。我们在每 个拍摄点各工作一个月左右,摄得了一批 各类天气系统下出现的具有青藏高原显著 特点的云状照片。从3000多张照片中初选 500余幅,于1984年 8 月在青海省西宁市, 经国内同行和专家审议,通过技术鉴定。

为了使国内、外的气象界以及有关学 科的研究者了解青藏高原的云,因此我们 编纂了《青藏高原云图》。本图集的出版, 首先在于为天气观测和天气预报提供参考 资料;其次在于为气象教学、航空事业、 云物理学、积云动力学、小尺度系统天气 学、高空气候学、青藏高原气象学等研究 领域,提供青藏高原云的普遍与特殊实例 和某些资料性的统计结果。

本图集选定了277幅(152组)云状照 片,着重选入具有青藏高原特点或反映青 藏高原天气气候特征的各类云状。对特殊 云、地形云尽可能编入其形成或演变过程 的实例。有些在平原地区常见,但在青藏 高原上却极少出现的标准云状,如蔽光高 层云、薄幕卷层云等,仅作为曾出现的云 状编入。同一云属则选取不同地点,不同 季节,具有特色的照片编入。力求用一系 列或一组云状照片阐述或佐证一个有关云 的现象或事实。另外还选用了一组全天照 相的反映视野天空状况的云系演变图和伴 有晕、华、霞等光象的云状。

限于现场探测条件,对有些特殊云未 能测得必要的数据,对其形成的物理机制 还不够了解,仅作为新事实或新现象编入 云图。

云层的高度,直接与天气系统、大气 层结状况紧密相关。我们在考察现场用国 产GGU3-1型激光测云仪测得了图片说明 和云高统计中的云高数据。激光测云仪在 使用前后均经厂方检验校准,考察期间曾 与雷达互校,性能正常。

为了探讨部分云状的形成或演变的背景,普查分析了300多个实例的天气图、 地面天气实况图、温度-对数压力图、高 空风等资料,并计算了部分个例的物理量。 以全国各类地形区域的123个代表站,10整 年近20个统计项目的数据进行分析,作为 与青藏高原对比的依据,归纳出了"青藏 高原云的概况"。

"青藏高原云图"科研组,是在高原 缺氧、气候恶劣、人烟稀少、交通不便和 生活艰苦的条件下进行野外考察的。参加 野外考察工作先后有14人。课题组长:吴 鹤轩;组员:宛正颐(女)、唐兰泉、李宣友、 陈建。参加过现场考察的还有单静武(托 托河气象站)、伍受天(上海无线电二十三 厂)、林自浩(青海省气象局)、葛跃华(青 海省气象台)、吴振怀、胡庆云(青海省气 象局)、何永(西藏气象局)、任卫东、孙亮 (青海电视台)。

资料整理分析:吴鹤轩、宛正颐;资 料统计:吴珍、于玲弟。

在考察期间曾得到西藏自治 区气象 局、日喀则气象台、帕里气象站、西藏定 日区驻军三连,以及青藏地区部分气象台、 站的领导和同志们的热情帮助,特此致谢。

向工作过程中给以鼓励並提出建议的 陶诗言、高由禧研究员、束家鑫、易任明 高级工程师、么枕生、田明远教授、侯宏 森、郭恩铭副研究员、陆同文、童乐天、 杨长鑫、许焕斌、李树檀工程师表示衷心 感谢。特别是向在选编云图和文字说明中 给予热心指导和具体审定的王鹏飞教授表 示由衷的感激。我们还向认真负责地将本 图的中文译成英文并提出宝贵意见的盛承 禹副教授及高国沛副教授表示衷心的感谢。

向所有关怀、支持本课题组工作的同志致谢。

吴鹤轩

1986年2月

28

一、青藏高原主要云状的特点	28
二、云量与水汽	33
三、各类地形区云状的对比统计	34
四、青藏高原积雨云与降水性质和雷	
暴的关系	36
五、实测云高统计	37
图片与说明	41
图 1 淡积云	43
图 2 一 3 淡积云与碎积云	44
图 4 - 5 带幡鬃积云	47
图 6 鬃积云的演变	49
图 7 带有幡体的鬃积云	50
图 8 立柱状积云发展、消散	52
图 9 立柱状积云消散过程	54
图 10 晴天积云转化为积雨云的过程	56
图 11 来自喜马拉雅山的积云群	57
图 12-15 浓积云	58
图 16-18 浓积云及幡	63
图 19 浓积云降水	66
图 20 浓积云转化为层积云	67
图 21 珠穆朗玛峰浓积云与积雨云交替演变	69
图 22 双层幞状云	72
图 23 砧状积雨云	73
图 24 积雨云群的云砧	74
图 25 秃积雨云云砧	75
图 26 积雨云云砧飘向与积云云向不一致现象	76
图 27 长砧鬃积云	78
图 28 长砧鬃积雨云与低空强风	79
图 29 携暴雨推进的积雨云	80
图 30 积雨云在局地降暴雨	81
图 31 鬃积雨云的鬃顶云泡	82
图 32	85

青藏高原云的概况

图 33	沿陡坡下沉的积雨云	88
图 34	鬃积雨云与秃积雨云	90
图 35	秋季积雨云群的合并	91
图 36	强对流云群的演变	92
图 37	冬季不降水的积雨云	95
图 38	鬃积雨云整体崩溃	96
图 39	鬃积雨云崩溃后的残体	97
图 40	延伸方向相反的两个庞大云砧	98
图 41	悬乳状积雨云与砧状秃积雨云	99
图 42	积雨云下面的碎雨云与堡状层积云	100
图 43	积雨云部分云体横向扩展	101
图 44	砧状积雨云	102
图 45	秃积雨云单体群云砧互连过程	103
图 46	秃积雨云	104
图 47	傍晚出现的庞大秃积雨云	105
图 48	秃积雨云群	106
图 49	立柱状鬃积雨云	107
图 50	鄂陵湖积雨云的演变	108
图 51-	-52 典型小尺度风暴云	112
图 53	滚轴状云的交叉现象	114
图 54	悬乳状鬃积雨云	115
图 55	悬乳状云体加长下垂消失的过程	116
图 56	悬乳状伪卷云	117
图 57	积云生层积云	118
图 58	非积云生蔽光层积云	119
图 59	积云生层积云	120
图 60	积云生层积云的地形性降水	122
图 61	积云生层积云促生透光高积云	123
图 62-	-63 复层积云	125
图 64-	-67 地形层积云	127
图 68	冬季堡状层积云及其变形	131
图 69	三条并列堡状层积云的形成过程	133
图70	荚状层积云与积云生层积云	136
图 71	地形层积云与荚状层积云	137
图72	荚状层积云	138

图73	荚状层积云束	139	图 114	钩卷云与密卷云
图74	不同高度的荚状层积云	140	图115	旋转状卷云
图 75	层云	141	图116	显示风速垂直切变
图 76	典型层云与碎层云	142	图117	密卷云向卷积云车
图 77	层云生积云	143	图118	伪卷云
图 78	层云向积状云转化	145	图119	带幡密卷云
图 79	层云生层积云	145	图120-	-122 荚状卷云
图 80	辐辏波状高积云	146	图123-	
图 81	絮状高积云	147	图125	绰莫拉利峰的旗z
图 82	显示有风切变存在的透光高积云	148	图126	绰莫拉利峰的旗z
图 83	逆温层下的透光高积云与积云	149	图127	雪山冰川云
图 84	似海浪的波状高积云	151	图128	湿霾与逆温层
图 85	不同高度的高积云与地形层云生积云	150	图129	霾与积云生层积z
图 86	高层云转化为高积云的过渡形态	153	图130	透光高积云与罕见
图 87	复高积云与密卷云	153	图131	秃积雨云、浓积云
图 88	堡状高积云	154	图132	傍晚的堡状云、鬃
图 89	荚状高积云	154	图133	秃积雨云、荚状云
图 90	荚状高积云片	155	图134	层积云、高积云上
图 91	荚状、波状高积云与霾	156	图135	高积云上的日华玛
图 92	荚状高积云云堆群	157	图136	透光高积云上的日
图 93	荚状高积云与荚状层积云云堆群	157	图137	晚霞色的荚状卷云
图 94-	-96 荚状高积云云堆	158	图138	伪卷云与晚霞
图 97	荚状高积云云条	159	图139	日晕与假日
图 98	荚状高积云与浓积云	160	全	天摄影图片的几点
图 99	高积云转化卷积云的过渡形态	162	图140	混乱天空
图 100	高积云转化密卷云的过渡形态	163	图141	弧形波状高积云
图 101	波状高积云向卷积云和密卷云转化	164	图142	不同高度的透光。
图 102	正在降雪的蔽光高层云	165	图143	高积云第一次消费
图 103	高层云向高积云转化	166	图144	再次出现高积云
图 104	高层云转化高积云的过渡形态	166	图145	不同高度的云层去
图 105	波状密卷云	167	图146	高积云移到天顶差
图 106	—107 鬃状卷云	168	图147	晴空与山区对流去
图 108	3—109 放射状卷云	169	图148	强对流云云砧相
图 110		170	图149	天顶积雨云云砧
图 111		170	图150	下沉气流造成的
图 112		172	图151	积雨云此消彼生
图 112		173	图152	地方性强对流云的
	アスカル王小ピム	170		and a survey of the set of

图 114	钩卷云与密卷云	175
图115	旋转状卷云	176
图116	显示风速垂直切变的密卷云形态	178
图117	密卷云向卷积云转化	178
图118	伪卷云	180
图119	带幡密卷云	181
图120-	-122 荚状卷云	182
图123-	-124 旗云	184
图125	绰莫拉利峰的旗云	186
图126	绰莫拉利峰的旗云转化为层积云	187
图127	雪山冰川云	188
图12 8	湿霾与逆温层	189
图129	霾与积云生层积云	189
图130	透光高积云与罕见喷射状云束	190
图131	秃积雨云、浓积云与晚霞	191
图132	傍晚的堡状云、鬃积雨云与密卷云	192
图133	秃积雨云、荚状云条与晚霞	193
图134	层积云、高积云与早霞	194
图135	高积云上的日华现象	195
图136	透光高积云上的日光华彩	196
图137	晚霞色的荚状卷云	197
图138	伪卷云与晚霞	198
图139	日晕与假日	198
全	天摄影图片的几点说明	199
图140	混乱天空	200
图141	弧形波状高积云	201
图142	不同高度的透光高积云	202
图143	高积云第一次消散	203
图144	再次出现高积云	204
图145	不同高度的云层云向不一	205
图146	高积云移到天顶并扩展	206
图147	晴空与山区对流云	207
图148	强对流云云砧相迎	208
图149	天顶积雨云云砧与母云	209
图150	下沉气流造成的青空	210
图151	积雨云此消彼生	211
图152	地方性强对流云的发展	212

CONTENTS

A General Survey of Cloud over the Qinghai-					
Xizang Plateau 1					
I. C	harac	teristics of Principal Cloud			
Shapes	Fou	nd over the Qinghai-Xizang			
Plateau					
II. Clo	oud A	mount and Water Vapour 7			
III. (Comp	arison of Clouds of Different			
Topogra	phic	Regions 8			
IV.	Relat	ionship Between Cumulonim-			
bus, and	l Prec	ipitation and Thunderstorm over			
		Kizang Plateau			
	,				
V. Sta	atistic	s of Actual Cloud Heights 17			
Plates an	d Illu	strations 41			
Plate	1	Cumulus humilis 43			
Plate	2	Cumulus humilis and Cumulus			
		fractus			
Plate	3	Cumulus humilis and Cumulus			
		fractus			
Plate	4	Cumulus capillatus with virga 47			
Plate		Cumulus capillatus with virga 48			
Plate	-	Evolution of Cumulus capil-			
1 1000	0	latus			
Plate	7	Cumulus capillatus with virga 50			
	8	Development and dissipation of			
I late	0	column-like Cumulus			
Dista	0				
Plate	7	Dissipation of column-like			
D1 (10	Cumulus			
Plate	10	Transformation process from			
		Cumulus into Cumulonimbus in			
		fine weather			

Plate	11	Groups of Cumulus from the
		Himalayas 57
Plate	12	Cumulus congestus 58
Plate	13	Cumulus congestus 59
Plate	14	Cumulus congestus 60
Plate	15	Cumulus congestus 62
Plate	16	Cumulus congestus with virga 63
Plate	17	Cumulus congestus with virga 64
Plate	18	Cumulus congestus with virga 65
Plate	19	Precipitation from Cumulus
		congestus
Plate	20	Transformation of Cumulus
		congestus into Stratocumulus 66
Plate	21	Alternation between Cumulus
		congestus and Cumulonimbus
		over Mt. Qomolangma 68
Plate	22	Cloud with double pileus 72
Plate	23	Cumulonimbus incus
Plate	24	Anvils of Cumulonimbus group 74
Plate	25	Anvil of Cumulonimbus calvus . 75
Plate	26	Difference in the drifting direc-
		tion between the anvils of
		Cumulonimbus and Cumulus 76
Plate	27	Cumulus capillatus with long
		anvil
Plate	28	Cumulonimbus capillatus with a
		long anvil and strong winds in
		the lower atmosphere 78
Plate	29	Rainstorm-carrying Cumulonim-
		bus 80
Plate	30	Local rainstorm produced by
		Cumulonimbus 81
Plate	31	Cells on the bristling top of
		Cumulonimbus capillatus 82
Plate	32	Evolution of Cumulonimbus
		capillatus 83

Plate	33	Cumulonimbus descending
		along a steep slope 88
Plate	34	Cumulonimbus capillatus and
		Cumulonimbus calvus 90
Plate	35	Amalgamation of Cumulonim-
		bus group in autumn 91
Plate	36	Evolution of vigorously con-
		vective cloud group 92
Plate	37	Non-precipitation Cumulonim-
		bus in winter
Plate	38	Total collapse of Cumulonim-
		bus capillatus 96
Plate	39	Residue of Cumulonimbus capil-
		latus after the decline 97
Plate	40	Two huge anvils extending in
		opposite directions
Plate	41	Cumulonimbus mammatus and
		Cumulonimbus calvus with
		anvil 99
Plate	42	Fractonimbus under Cumulo-
		nimbus and Stratocumulus cas-
		tellanus
Plate	43	Horizontal expansion of part of
		Cumulonimbus 101
Plate	44	Cumulonimbus incus 102
Plate	45	Interlinkage between anvils of
		cell group of Cumulonimbus
		calvus 102
Plate	46	Cumulonimbus calvus 104
Plate	47	Huge Cumulonimbus calvus
		appearing in the evening 105
Plate	48	Cumulonimbus calvus group 106
Plate	49	Column-like Cumulonimbus
		capillatus 106
Plate	50	Evolution of Cumulonimbus
		over the Ngoring Lake 108
Plate	51	Typical micro-scale stormy
		clouds
Plate	52	Typical micro-scale stormy
		clouds

	Plate	53	Crossing of rotor cloud 114
88	Plate	54	Cumulonimbus capillatus with
nd			mamma 115
90	Plate	55	Lengthening, hanging and dis-
m-			sipating processes of cloud with
•• 91			mamma 116
on-	Plate	56	Cirrus nothus with mamma 117
92	Plate	57	Stratocumulus cumulogenitus 118
m-	Plate	58	Stratocumulus opacus of non-
94			cumulogenitus 119
m-	Plate	59	Stratocumulus cumulogenitus 120
96	Plate	60	Orographic precipitation of
pil-			Stratocumulus cumulogenitus 122
97	Plate	61	Altocumulus translucidus indu-
in			ced by Stratocumulus cumulo-
98			genitus 123
ind	Plate	62	Stratocumulus duplicatus 125
	Plate	63	Stratocumulus duplicatus 126
99	Plate	64	Orographic Stratocumulus 127
10-	Plate	65	Orographic Stratocumulus 128
as-	Plate	66	Orographic Stratocumulus 129
100	Plate	67	Orographic Stratocumulus 130
of	Plate	68	Stratocumulus castellanus in
101			winter and its deformation 131
102	Plate	69	Formation of three parallel bars
of			of Stratocumulus castellanus . 133
ous	Plate	70	Stratocumulus lenticularis and
102			Stratocumulus cumulogenitus 136
104	Plate	71	Orographic Stratocumulus and
5			Stratocumulus lenticularis 137
105	Plate	72	
106	Plate	73	Cluster of Stratocumulus lenti-
JS			cularis 139
106	Plate	74	Stratocumulus lenticularis
bus			clouds at different levels 140
108	Plate	75	
у .	Plate	76	Typical Stratus and Stratus
112			fractus 142
	Plate		Cumulus stratogenitus 143
113	Plate	78	Stratus passing into cumuli-

		form cloud145
Plate	79	Stratocumulus stratogenitus145
Plate	80	Altocumulus radiatus and
		undulatus
Plate	81	Altocumulus floccus
Plate	82	Altocumulus translucidus sug-
		gesting the presence of wind
		shear
Plate	83	Altocumulus translucidus and
		Cumulus under the inversion
		layer
Plate	84	Sea-wave-like Altocumulus un-
		dulatus
Plate	85	Altocumulus and orographic
		Cumulus stratogenitus at dif-
		ferent levels
Plate	86	Transitional form of Altos-
		tratus passing into Altocumu-
		lus
Plate	87	Altocumulus duplicatus and
		Cirrus densus
Plate	88	Altocumulus castellanus 154
Plate	89	Altocumulus lenticularis 154
Plate	90	Pieces of Altocumulus lenti-
		cularis
Plate	91	Altocumulus lenticularis, Alto-
		cumulus undulatus and haze 156
Plate	92	
		cularis
Plate	93	Altocumulus lenticularis and
A. ⁶⁶		Piles of Stratocumulus lenticu-
		laris
Plate	94	Piles of Altocumulus lenticu-
		laris
Plate		Piles of Altocumulus lenticu-
	- 44 - 14	laris
Plate	96	Piles of Altocumulus lenticu-
	_	laris 159
Plate	97	
		laris

Plate	98	Altocumulus lenticularis and
		Cumulus congestus
Plate	99	Transitional form of Altocumu-
		lus in its transformation into
		Cirrocumulus 162
Plate	100	Transitional form of Altocu-
		mulus in its transformation into
		Cirrus densus 163
Plate	101	Transformation of Altocumulus
		undulatus into Cirrocumulus
		and Cirrus densus
Plate	102	Altostratus opacus discharging
		snow
Plate	103	Transformation of Altostratus
		into Altocumulus
Plate	104	Transitional form of Altostra-
		tus passing into Altocumulus . 166
Plate	105	Wavy Cirrus densus
Plate	106	Capillatus-like Cirrus
Plate	107	epinaeu 🚽 hinnean anna ann ann ann ann ann ann ann a
Plate	108	Cirrus radiatus
Plate	109	Cirrus radiatus
Plate	110	
Plate	111	
Plate		Cirrus castellanus and virga 172
Plate		Spurting Cirrus castellanus173
Plate	114	Cirrus uncinus and Cirrus
		densus
Plate	115	Whirling Cirrus
Plate	116	Cirrus densus displaying the
		vertical shear of wind velocity .177
Plate	117	Transformation of Cirrus den-
		sus into Cirrocumulus
Plate	118	Cirrus nothus
Plate	119	Cirrus densus with virga181
Plate	120	Cirrus lenticularis
Plate	121	Cirrus lenticularis182
Plate	122	Cirrus lenticularis182
Plate	123	Banner cloud184
Plate	124	Banner cloud

Plate	125	Banner cloud over the Chuo- molali Peak
Plate	126	Transformation of banner cloud
		over the Chuomolali Peak into
		Stratocumulus
Plate	127	Snowberg-glacier cloud 188
Plate	128	Wet haze and inversion layer 189
Plate	129	Haze and Stratocumulus cumu-
		logenitus
Plate	130	Altocumulus translucidus and
		the rarely seen spurting cloud
		cluster
Plate	131	Cumulonimbus calvus, Cumulus
		congestus and evening glow 191
Plate	132	Castellanus cloud, Cumulonim-
		bus Capillatus and Cirrus
		densus occurring towards
		evening
Plate	133	Cumulonimbus calvus, strips of
		lenticular cloud and evening
		glow
Plate	134	Stratocumulus, Altocumulus
		and morning glow
		Solar corona on Altocumulus 195
Plate	136	Solar corona on Altocumulus
	105	translucidus
Plate	137	Cirrus lenticularis with sunset
DI	100	glow colour
		Cirrus nothus and afterglow 198
Plate	139	Solar halo and mock sun 198

			marks on Pictures Taken by
186			otography199
	Plate	140	Chaotic sky 200
107	Plate	141	Arch-shaped Altocumulus un-
187			dulatus 201
188	Plate	142	Altocumulus translucidus
189			clouds at different levels 202
	Plate	143	First dissipation of Altocumu-
189			lus
	Plate	144	Reappearance of Altocumulus 204
	Plate	145	Cloud layers of different
190			heights extending in different
			directions
191	Plate	146	Altocumulus which moves to
			the zenith and expands 206
	Plate	147	Clear sky and convective clouds
			over a mountainous region 207
192	Plate	148	Encounter of the anvils of
			strongly convective clouds 208
2	Plate	149	Anvil of Cumulonimbus at the
193			zenith and the mother cloud 209
	Plate	150	Blue sky caused by subsident
194			air flows 210
195	Plate	151	Repeated geneses and dissipa-
			tion of Cumulonimbus clouds . 211
196	Plate	152	Development of local vigorous-
			ly convective clouds 212
107			-,

A General Survey of Cloud over the Qinghai-Xizang Plateau

I. Characteristics of Principal Cloud Shapes Found over the Qinghai-Xizang Plateau

Cloud observations are generally made in accordance with the classification set out in *the International Cloud Atlas* (1956) published by the World Meteorological Organization, a morphological classification which is based on the shapes and colours of clouds seen from the earth. This classification, though lacking in accuracy in distinguishing certain types of clouds, is hardly replaceable, as is shown by international practices over the years. The reason is simple: so far, the nakedeye observation is still the chief means for the identification of clouds.

The classification above is based on naked-eye observations of clouds over areas of moderately high altitudes. However, the Qinghai-Xizang Plateau is a region where the altitude is 4000 m above sea level, the freezing level is relatively low and the water content of clouds is less. Consequently, in spite of the fact that some of the clouds seen there are similar to those found in areas of low altitudes, many of them assume shapes peculiar to this region. Besides, the processes of evolution of these clouds can hardly be adequately covered by definitions and descriptions contained in the International Cloud Atlas. As it turns out, discrepancies can often be found between the clouds over the Plateau and the definitions and descriptions of the International Cloud Atlas. It is these discrepancies that reveal the special laws governing the weather and climate of the Qinghai-Xizang Plateau. So it follows that these special cloud shapes of the Plateau

should be treated as varieties of certain frequently seen cloud shapes, and be given names different from those listed in *the International Cloud Atlas*. However, since they are varieties, their new designations should not ignore their relationship with similar clouds covered in *the International Cloud Atlas*. This is the principle we follow in naming the special cloud shapes of the Plateau. The name "Cumulus capillatus" is a case in point (Plates 4-7).

This Atlas consists of photographs taken on the basis of eye-observation from the earth. This method, simple and easy to apply, proves particularly useful when micro-scale weather system clouds, special orographic clouds and indication clouds are studied for the purpose of providing reference material for weather forecasts. As is confirmed by practices, the eye-observation method, when used in conjunction with satellite cloud pictures, radar echoes, synoptic charts and sounding data in the study of clouds and weather, can produce very reliable results. The study of the characteristics, physical conditions, geographical distributions and temporal and spatial variations of the clouds over the Qinghai-Xizang Plateau is one of the important fields necessitated not only by the research of weather changes resulting from clouds, but also by the research in aeroclimatology and synoptic meteorology of plateaus, cloud physics and micro-scale synoptic meteorology.

Based on field surveys and examples contained in this Atlas, an attempt is made to list five features of clouds over the Qinghai-Xizang Plateau:

1

(1) The clouds have a large variety of shapes. Almost all the standard cloud shapes can be seen over the Plateau, the only difference being that some of them, such as Cirrostratus nebulosus, Altostratus opacus and Nimbostratus, are not so frequently found as in non-plateau areas. In addition, there are over the Plateau special clouds which are rarely seen in non-plateau areas; chief among them are large and long castellanus cloud belts, micro-scale stormy clouds, glacier clouds over snowberg, banner clouds and cumulus capillatus.

(2) Cloud heights are confused. Though clouds over the Plateau can be classified as high and low in terms of the distance between them and the ground, yet it often happens that high clouds are not really high, and low clouds are not really low over the Plateau; sometimes an inversion of the two types of clouds can be observed.

(3) Cloud transformation is rather complicated. This feature of the clouds over the Plateau is manifested in the direct transformation of cumuliform clouds into stratiform clouds, and from ice clouds into water clouds, as well as in the frequent emergences of a transitional state in which two species of clouds co-exist.

(4) Cloud evolution follows a special pattern. Stratiform clouds of the frontal system, which are often seen over areas of low altitudes, are rarely found over the Qinghai-Xizang Plateau, where in the processes of cloud evolution of various weather systems, high clouds will as a rule appear first, followed by low clouds, and clouds of medium height are rare here. Furthermore, precipitation mostly occurs when Cumulonimbus makes its appearance.

(5) Precipitation comes from all types of clouds. Apart from common precipitation

bearing clouds, there are certain types of clouds such as virga which do not produce rain in low-altitude areas but can cause precipitation on the Plateau.

1. Cumulonimbus of the Qinghai-Xizang Plateau

This type of clouds may appear over the Plateau any day in the year in a large variety of shapes. Compared with its normal forms, Cumulonimbus over the Plateau is less dense and less dark in colour, and has a low glaciation level. Moreover, it has a small vertical thickness and covers a wide range horizontally, with virga hanging frequently from its bottom. There is no vigorous turbulence, and the cloud waist — the bee-waist-shaped part that connects the anvil and the main body of the cloud — is scarcely found.

The Cumulonimbus clouds of the summer-precipitation type are relatively massive, composed, in most cases, of several cloud cells, with their bases often taking the shape of a mamma or rotor, and accompanied by down-drag streaks of rain droplets. Most clouds of this type result from the lowpressure system of the Plateau, working in association with orographical dynamic and thermal convective effects.

A large quantity of energy can be released in certain localities by the orographical dynamic and thermal effects of the Plateau. This can lead to the formation of hail-stormy clouds and to the production of small-scale convective weather. The violently convective cloud usually has a very short life span, and is built up suddenly with its base getting very near to the ground or water surface — this is a form of Cumulonimbus peculiar to the Plateau (Plates 50-52).

Under the influence of mid- or loweratmosphere strong winds or jet streams, the