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Preface

Leévy processes can be thought of as random walks in continuous time,
that is they are stochastic processes with independent and stationary
increments. The state space may be a fairly general topological group,
but in this text, we will stick to the Euclidean framework. The best
known and most important examples are the Poisson process, Brownian
motion, the Cauchy process, and more generally stable processes. Lévy
processes concern many aspects of probability theory and its applications.
In particular, they are prototypes of Markov processes (actually, they
form the class of space-time homogeneous Markov processes) and of
semimartingales; they are also used as models in the study of queues,
insurance risks, dams, and more recently in mathematical finance. From
the viewpoint of functional analysis, they appear in connection with
potential theory of convolution semigroups.

Historically, the first researches go back to the late 20’s (that is when
the foundations of modern probability theory were laid down) with the
study of infinitely divisible distributions. Their general structure has been
gradually discovered by de Finetti, Kolmogorov, Lévy, Khintchine and
Ito; it is described by the celebrated Lévy-Khintchine formula which
points out the correspondence between infinitely divisible distributions
and processes with independent and stationary increments. After the
pioneer contribution of Hunt in the mid-50’s, the spreading of the theory
of Markov processes and its connection with abstract potential theory
has had a considerable impact on Lévy processes; see the works of
Doob, Dynkin, Blumenthal and Getoor, Skorohod, Kesten, Bretagnolle,
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Port and Stone, Berg and Forst, Kanda, Hawkes, - - -. At the same time,
the fluctuation theory for random walks developed chiefly by Spitzer,
Feller and Borovkov via analytic methods has been extended to con-
tinuous time by approximations based on discrete time skeletons; and
many important properties of the sample paths of Levy processes have
been noted by Rogozin, Taylor, Fristedt, Pruitt, and others. Path trans-
formations such as reflexion, splitting or time reversal form another set
of useful techniques that were applied initially (in continuous time) to
Brownian motion. Their importance for Lévy processes was recognized
first by Millar, Greenwood and Pitman, who presented a direct approach
to fluctuation theory. Further developments in this setting were made
quite recently by Bertoin, Doney and others. Local times have received a
lot of attention in the last ten years or so; the most impressive result in
that field is perhaps the characterization by Barlow and Hawkes of the
class of Lévy processes which possess jointly continuous local times; see
also the recent works of Marcus and Rosen in the symmetric case. To
complete this brief overview, we stress that the so-called general theory
of processes also has many important applications to Lévy processes, in
particular concerning stochastic calculus and limit theorems.

Several books contain sections or chapters on Lévy processes (e.g. Levy
(1954), 1td6 (1961), Gihman and Skorohod (1975), Jacod and Shiryaev
(1987}, Sato (1990, 1995), Skorohod (1991), Rogers and Williams (1994),
... ); see also the surveys by Taylor (1973), Fristedt (1974) and Bingham
(1975). The purpose of this monograph is to present an up-dated and
concise account of the theory, which may serve as a reference text. I
endeavoured to make it as self-contained as possible; the prerequisite 1s
limited to standard notions in probability and Fourier analysis.

Here is a short description of the content. A chapter of preliminaries
introduces the notation and reviews some elementary material on in-
finitely divisible laws, Poisson processes, martingales, Brownian motion
and regularly varying functions. The core of the theory of Lévy pro-
cesses in connection with the Markov property and the related potential
theory is developed in chapters I and II. The theory of general Markov
processes is doubtless one of the most fascinating fields of probability,
but it is also one of the most demanding. Nonetheless, the special case
of Lévy processes is much easier to handle, thanks to techniques of
Fourier analysis and the spatial homogeneity. We stress that no prior
knowledge of Markov processes is assumed. Chapter III is devoted to
the study of subordinators, which form the class of increasing Lévy
processes; a special emphasis is given to the properties of their sample
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paths. Subordinators also have a key part in chapter IV, where we in-
troduce Itd’s theory of the excursions of a Markov process away from
a point, and in chapter V, where we investigate the local times of Levy
processes. The fluctuation theory is presented in chapter VI, following
the Greenwood-Pitman approach based on excursion theory. Chapter
VI is devoted to Lévy processes with no positive jumps, for which fluc-
tuation theory becomes remarkably simple. Some path transformations
are described, which extend well-known identities for Brownian motion
due to Williams and Pitman. Finally, several consequences of the scaling
property of stable processes are presented in chapter VIIL. Each chapter
ends with exercises, which provide additional information on the topic
for the interested reader, and with comments, where credits and further
references are given. To avoid duplication with the existing literature on
semimartingales, we did not include material on stochastic calculus or
limit theorems; we refer to Jacod (1979), Protter (1990) and Jacod and
Shiryaev (1987) for detailed expositions.

We use the following labels. Roman numbers refer to chapters, arabic
numbers to statements, and numbers between parentheses to equations
or formulas. For instance, Proposition V.2 designates the proposition
with label 2 of chapter V, and (II1.10) the equation with label (10) in
chapter III. The roman number refering to a chapter is omitted within
the same chapter.

This text is partially based on a ‘cours de troisiéme cycle’ taught in the
Laboratoire de Probabilités de L'Université Pierre-et-Marie-Curie. My
work was greatly eased by the position I had at this time in the Centre
National de la Recherche Scientifique. I should like to thank warmly
my colleagues in the Laboratoire de Probabilités, and to express my
deep gratitude to Nick Bingham, Ron Doney, Daniel Revuz and Hrvoje
Sikic, who read preliminary versions of the manuscript and corrected
uncountable errors, misprints and misuses of the English language.
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Preliminaries

1. Notation
In this section, we set down notation which will be used throughout the
text.

We denote by R? the d-dimensional Euclidean space, equipped with
the standard scalar product (-,-) and the Euclidean norm }-|. It is
endowed with the Borel sigma-field #(R%) and the Lebesgue measure dx.
The abbreviation a.e. refers to ‘almost everywhere’ with respect to the
Lebesgue measure. The lower and upper bounds of a subset A of the
nonnegative half-line [0, c0) are denoted by inf A and sup A, respectively,
with the convention that inf § = oo and sup® = 0. We say that a function
f :[0,00) — [0,00] is increasing if f(s) < f(t) for all 0 < s < t. If the
preceding condition holds with < replaced by <, we say that f is strictly
increasing. We use Landau’s notation f = o(g), f = O(g) and f ~ g for
lim(f/g) =0, limsup(f/g) < co and lim(f/g) = 1, respectively.

Next, we introduce the so-called canonical notation for right-con-
tinuous substochastic (i.e. possibly defective) processes having left
limits. Specifically, take an isolated point ¢ which will serve as cemetery.
Consider

Q = D([0,0), R U {8}),
the set of paths w : [0,00) — R? U {9} with lifetime
{(w) =inf{t >0 : w(t) =0}

which are right-continuous on [0, w0), have a left limit denoted by w(s—)
for any s € (0,00), and stay at the cemetery point J after the lifetime
{(w). This space is endowed with Skorohod’s topology, for which we
refer to chapter VI in Jacod and Shiryaev (1987). In particular, Q is a
Polish space, that is it is metric-compliete and separable. We shall not use
Skorohod’s topology directly, but it is crucial to work on a Polish space to
apply fundamental theorems of probability theory, such as the existence
of conditional laws. The Borel sigma-field of Q is denoted by #.

We then introduce the coordinate process X = (X,,t > 0), where

X, = X,(0) = o(t).
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We also write { = {(w) for the lifetime of X and
X =X (0)=wls~) , AX;=X,—-X,_
respectively for the left limit and the jump at time s € (0,{). The family
of mappings 6, : Q — Q and k, : Q@ — Q (t > 0), specified by
Bio(s) = w(t+s)  (s20)

and

_Jols) ifs<t,
ki(s) {6 otherwise

are called the translation and the killing operators, respectively.

Suppose that PP is a probability measure on (Q, #), and Y is a random
variable, say taking values in RY. We denote the expectation of Y under
P by EE(Y') whenever it makes sense. We then write IE(Y, Ay, -+, Ay) for
E(1AY) with A = A;jN---NA, where Ay,---, Ay € F, and E(Y | 4)
for the conditional expectation given some subfield %. Finally, we denote
either by P(Y € -) or by IP(Y € dy) the distribution of Y under IP. We
say that a family (P(|Y = y),y € R?) of laws on (£, %) is a version
of the conditional law P given Y ‘if the mapping y — P(|Y = y) is
measurable, P(Y = y|Y = y) =1 for all y € R, and

P(A)=/WIP(AIY=y)lP(Y € dy), Ae#F.

We refer e.g. to chapter III in Dellacherie and Meyer (1975) for the
existence of conditional laws.

2. Inofinitely divisible distributions
Consider a probability measure 4 on R, and its characteristic function

Fuli) = /R expli(t, )juldx) (L€ RY)

The law yu is called infinitely divisible if for any positive integer n, there
exists a probability measure u, with characteristic function %y, such
that Fu = (¥Fu,)". In other words, ¢ can be expressed as the n-th
convolution power of u, The simplest examples of infinitely divisible
laws are Dirac point masses, Gaussian and stable distributions, and in
dimension d = 1, Poisson and Gamma distributions.

Assume now that p is infinitely divisible. Then its characteristic func-
tion never vanishes and can be expressed as follows. There is a unique
continuous function ¥ : R? — €, called the characteristic exponent of U,
such that W(0) = 0 and

Fu(d) = exp{—¥(1)} (A€ RY).
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We see that if u; and y; are two infinitely divisible laws with respective
characteristic exponents ‘¥ and '¥',, then the convolution y, * y; is again
infinitely divisible with characteristic exponent ¥, + ¥».

The starting point of many studies of infinitely divisible laws is the
famous Lévy-Khintchine formula (see for instance section 7.6 in Chung
(1968), or chapter XVII in Feller (1971)) which determines the class of
characteristic functions corresponding to infinitely divisible laws.

Lévy-Khintchine formula A function ¥ : R® — C s the characteristic
exponent of an infinitely divisible probability measure on R? if and only
if there are a € RY, a positive semi-definite quadratic form Q on R¥, and
a measure T1 on R? — {0} with [(1 A |x]*)Il(dx) < oo such that

‘P(l)=i(a,i)+%Q(i)+ /R d(l—e“’m+i(,l,x)l{|x|<1})l'l(dx) (1)

for every 2 € R,

The parameters a, @, and I appearing in (1) are determined by ¥, and
their probabilistic meanings will be clarified in section L.1. The measure
IT is called the Lévy measure of u and the quadratic form @ the Gaussian
coefficient . We mention that some authors use a slightly different expres-
sion for the Lévy-Khintchine formula. Specifically, the cut-off function
1{ix<1} is replaced by a bounded smooth function which is equivalent to
1 at the origin, the most common being (1 + |x|?>)~!. Such a change in
the choice of the cut-off function does not alter the Lévy measure and
the Gaussian coefficient, but the parameter a has to be replaced by

, 1
a =a+ Adx (W - 1{1x5<x}> I(dx).

3. Martingales
Consider a probability space (2, #,P) endowed with a filtration (%),.,
i€. an increasing family of sub-fields, which fulfils the usual conditions.
That is each &, is P-complete and #, = [, for every t. A real-
valued stochastic process M = (M,,0 < t < o) is a martingale if

EM, | F5) = M;, 0<s<it.
(It is implicit here that E(|M,|) < oo for all t.) We say that M 1s right-
continuous if its sample paths are right-continuous a.s., and uniformly

integrable if there exists an increasing function f : [0,00) — [0,00) with
x = o(f(x)) as x goes to oo, such that sup{IE(f(IM,])) : t = 0} < .
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We assume from now on that M is a right-continuous martingale. The
following key resuits are due to Doob, and we refer to chapter VI of
Dellacherie and Meyer (1980) for a complete account.

Maximal inequality For every t > 0, we have
E (sup{|M;? : 0 < s < t}) < 4E(IM*).

A nonnegative random variable T is called a stopping time if for every
t>0,{T<t}eF.

Optional sampling theorem Suppose that T is a stopping time, a.s. finite.

(i)  The stopped process (Mtn,,t = 0) is again a martingale.
(ii) Suppose moreover that M is uniformly integrable. Then E(M7) =
E(My).

Convergence theorem Suppose that M is uniformly integrable. Then
lim, ..o M, = M, exists a.s. and in L'(P), and M, = E(M. | #,) for all t.

4. Poisson processes
The proofs of the results stated in this section and the next can be found
in section XIIL.1 in Revuz and Yor (1994).
The Poisson distribution with parameter (or intensity) ¢ > 0 is the
probability measure on integers which assigns mass e~“c/(k!) at point
k € N. Its characteristic function is

Ze'”‘e'f% = exp{—c(1-¢%)} , 1€R
k=0 :

The Poisson distribution is infinitely divisible, and the results of sec-
tion 1.1 below guarantee the existence of a unique (in law) increas-
ing right-continuous process N with stationary independent increments,
called a Poisson process of parameter (or intensity) c, such that for
each t > 0, N, has a Poisson distribution with parameter ¢t. One can
also construct N directly as follows. Consider a probability measure P
and a sequence 1, -+, T, - of independent exponential variables with
parameter c, that is P(r; > s) = e for s > 0. Introduce the par-
tial sums S, = t; + '+ + T,, n € N, so that S, has the Gamma(c, n)
distribution,

c"

P(S, €ds) = T

s"le " ds (s=0).
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Then consider the right-continuous inverse N; = sup{n € N : §, < ¢}
(¢ = 0), so that for everyt = 0 and k € N,
&

—1  —cs ,—c(t—5)
(k—l)ISk e e ds

P(N, = k) = P(S < 1,541 > 1) = /
0

=e “(ct)*/(k!).
On the other hand, it follows easily from the so-called lack-of-memory
property of the exponential law that for every 0 < s < , the incre-
ment N,,; — N, has the Poisson distribution with parameter cs and is
independent of the sigma-field generated by (N,,u < t).

Next, let (4,) be a filtration which satisfies the usual conditions. We
say that N is a (%,)-Poisson process if N is a Poisson process which
is adapted to (%) and for every s,t > O, the increment N5 — N, is
independent of %,. In particular, N is a (%,)-Poisson process if (%,) is the
natural filtration of N. ‘

There are three important families of martingales related to a (%)-
Poisson process. First, one says that a process H = (H,,t > 0) is
predictable if it is measurable in the sigma-field generated by the left-
continuous adapted processes. If H is a real-valued predictable process
with lE(f(; |H,|ds) < oo forall t > 0 and if N = (N,,t = 0) is a (¥,)-Poisson
process with parameter ¢ > 0, then the compensated integral

! t
M, =/ HJdN; — c/ Hds (t=0)
0 0
is a (4,)-martingale. If moreover E( fot H2ds) < oo, then

!
Mlz—c/ H%ds (t>0)
0

is also a martingale. Finally, if H is predictable and bounded, then the
same holds for the exponential process

exp{/otHSst+c/ol(l—e"’)ds} (t =0).

Here, the various integrals with dN; as integrator are taken in the sense
of Stieltjes.

We conclude this section by recalling a well-known criterion for the
independence of Poisson processes.

Proposition 1 Let N9,i = 1,---,d, be (4,)-Poisson processes. They are
independent if and only if they never jump simultancously, that is for
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every i,j withi # j
NY-NO =0 orNY~NP =0 forallt>0, as,
where N stands for the left limit of N®) at time t.

It is crucial in Proposition 1 to assume that the N” are Poisson processes
in the same filtration. Otherwise, it is easy to construct Poisson processes
which never jump simultaneously and which are not independent.

5. Poisson measures and Poisson point processes
Let E be a Polish space and v a sigma-finite measure on E. We call a
random measure @ on E a Poisson measure with intensity v if it satisfies
the following. For every Borel subset B of E with v(B) < o0, ¢(B) has
a Poisson distribution with parameter v(B), and if By, - -, B, are disjoint
Borel sets, the variables @(By)," - -, @(B,) are independent. Plainly, ¢ is
then a sum of Dirac point masses.

One can construct Poisson measures as follows. First, assume that the
total mass of v is finite, and put ¢ = v(E). Let £, -, {,, - - - be a sequence
of independent identically distributed random variables with common
law c—!v and a Poisson variable N with parameter ¢ independent of the
£,’s. The random measure

N
¢ = Z 5¢,,
j=1

where 8. stands for the Dirac point mass at € € E, is a Poisson measure
with intensity v. If v is merely sigma-finite, there exists a partition
(E,,n € N) of E into Borel sets such that v(E,) < co for every integer n.
Then we can construct a sequence ¢, of independent Poisson measures
with respective characteristic measures 1g,v, and ¢ = > @, is a Poisson
measure with intensity v.

We then consider the product space E x [0, 0), the measure yu = v ®dXx,
and a Poisson measure ¢ on E x [0,00) with intensity u. It is easy to
check that as., @(E x {t}) = 0 or 1 for all t+ > 0. This enables us to
represent ¢ in terms of a stochastic process taking values in E U {T},
where Y is an isolated additional point. Specifically, if ¢(E x {t}) = 0,
then put e(t) = Y. If @(E x {t}) = 1, then the restriction of ¢ to the
section E x {t} is a Dirac point mass, say at (e, 1), and we put e(t) = e.
We can now express the Poisson measure as

¢ = e

t=0
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The process e = (e(t),t > 0) is called a Poisson point process with
characteristic measure v. We denote its natural filtration after the usual
completion by (%,).

For every Borel subset B of E, we call

NZ = Card{s<t:e(s)€B} = @(Bx[0,1]) (t=0)

the counting process of B. It is a (%,)-Poisson process with parameter
v(B). Conversely, suppose that e = (e(t),t > 0) is a stochastic process
taking values in E U {Y} such that, for every Borel subset B of E, the
counting process N3 = Card{s < t : e(s) € B} is a Poisson process
with intensity v(B) in a given filtration (%,). Then observe that counting
processes associated to disjoint Borel sets never jump simultaneously and
thus are independent according to Proposition 1. One then deduces that
the associated random measure ¢ = .o, is a Poisson measure
with intensity g.

We next present a useful probabilistic interpretation of the character-
istic measure v.

Proposition 2 Let B be a Borel set with 0 < v(B) < oo. The first
entrance time of e into B, Ty = inf{t > 0 : e(t) € B}, is a (%,)-stopping
time and we have

(i)  Tg has an exponential distribution with parameter v(B).
(i) The random variable e(Tg) is independent of Ty and has the law
v(- | B), that is for every Borel set A,

P(e(Tp) € A) = v(AN B)/v(B) .
(iii) The process ¢ given by €(t) = Y if e(t) € B and €'(t) = e(t)
otherwise (t = 0) is a Poisson point process with characteristic
measure 1g.v, and is independent of (Tg,e(Tg)).

The process (e,,0 < t < Tp) is called stopped at the first point in B,
its law is characterized by Proposition 2.

In practice, it is important to calculate certain expressions in terms
of the characteristic measure. The following two formulas are the most
useful:

Compensation formula Let H = (H,,t > 0) be a predictable process
taking values in the space of nonnegative measurable functions on EU{Y},
such that H(Y) =0 for allt > 0. We have

E( > H,(e(t))) = E( /0 d /E dv(e)H,(e)) .

0<t<oo
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Exponential formula Let f be a complex-valued Borel function on E U
{Y} with f(Y) =0 and

/v(de)ll-ef("l < .
E

We have for everyt > 0

E(eXP{ > f(e(s))}) = CXP{—t /E v(de)(1 ——e“")} .

0<s<t

These two formulas are easy to prove when the space E is finite, using
respectively the first and the third special martingale of section 4. The
general case then follows from a monotone class theorem.

We conclude this section with a useful inequality which is a consequence
of Doob’s maximal inequality applied to the first special martingale of

section 4.

Maximal inequality for compensated snms Let f be a Borel function on
E U {Y} with f(Y) =0. We have for every fixed T >0

2
(sup{ Zf(e s))—t/f (e)dv(e)| ,0<t< T}) <4T/f (e)2dv(e) .

O<s<t
6. Brownian motion
A real-valued stochastic process B = (By,t > 0) is a (linear) Brownian
motion if its sample paths are continuous a.s., its law at any fixed time
t > 0 is the centred Gaussian distribution with variance t,

P(B, € dx) = (2nt)" /2 exp{—x?/2t}dx ,

and its increments are independent in the sense that for any s,t > 0,
B.; — B, is independent of the o-field generated by (B,,0 < u < t). Note
that this implies that B, — B, has the centred Gaussian distribution
with variance s, so that B is a Gaussian process with stationary (or,
homogeneous) independent increments. Finally, a process (B',---, BY)
taking values in the d-dimensional Euclidean space is a Brownian motion
if its coordinates B!, -, B? are independent linear Brownian motions.
There are several different constructions of Brownian motion; here
is one of the simplest (see e.g. section I.1 in Revuz and Yor (1994)).
First, a standard result guarantees the existence of a centred Gaussian
process B= (B,,t > 0) with covariance E(B, B,) = sAt. Then one applies
Kolmogorov’s criterion to verify that there is a continuous version B of
B that is B, = B, a.s. for every t > 0. Actually, Kolmogorov’s criterion




