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Preface

Today we are seeing strong demand for integrating more func'tionality onto silicon,
Nonetheless, we are soon approaching the limit of Moore’s law. In fact, the
fundamental physics laws preclude the scaling of CMOS devices below a certain
dimension. On the other hand, so far no alternative technologies are likely to mature
and replace CMOS in the coming 15 years. Then how could the semiconductor
industry continue to provide integration capacity for constantly increasing
functionality?

3-D integration is a natural solution to address the above problems. Orthogonal
to shrinking feature size, a 3-D integrated VLSI system would deploy multiple
device layers to improve integration density. Moreover, since the vertical inter-chip
interconnects could provide a shortcut to break long signal paths, a 3-D IC would
have opportunity for improved circuit performance. Inspired by the great potential,
many 3-D integration schemes and fabrication technologies have been proposed
in the last a few years.

As pioneers in this new 3-D arena, the authors of this book designed a new 3-D
integration scheme, so-called 2,5-D integration. According to this concept, a VLSI
system is built as a 3-dimentional assembling of monolithic chips with small-scaled
inter-chip interconnections. With a carefully designed, incremental and hierarchical
testing methodology, this approach would largely overcome the accumulative yield

loss problem hindering other 3-D integration schemes.



In this book, the authors evaluated the feasibility of the 2.5-D integration from
both cost and performance perspectives. They established an analytical cost model
to compare the manufacturing cost of different VLSI integration styles. The cost
analysis shows that the 2.5-D scheme could offer significant cost saving over other
schemes. Secondly, the authors performed design case studies on real-world designs.
These studies demonstrate the strong potential of 2.5-D integrated designs for higher
performance. To study the characteristics of 3-D layouts, the authors constructed
a prototype EDA tool-chain consisting of 2.5/3-D floorplanning, placement, and
routing tools. With these tools, a synthesized netlist could be automatically
implemented as manufacturable layout.

To the best of my knowledge, this book is the first one to give a complete
overview of the 3-D integration problem. It would provide valuable information
for readers from vatious communities, such as semiconductor fabrication process
developers, IC designers, and EDA R&D practitioners. The book could also serve

as an excellent reference for graduates majoring in microelectronics.

Prof. Zhihua Wang
Professor

Institute of Microelectronics
Tsinghua University

Beijing, China

November, 2008
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1 Introduction

Yangdong (Steve) Deng

Institute of Microelectronics, Tsinghua University

Beijing 100084, P. R. China, dengyd@tsinghua.edu.cn

Wojciech P. Maly

Electrical and Computer Engineering Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213-3891 USA, maly@ece.cmu.edu

Abstract In this chapter we elaborate on the need for new 3-dimensional
VLSI paradigms by extrapolating the trend of technology development. On
such a basis, we will propose our target 2.5-D integration scheme, and then
explain its advantages. The fabrication, testing, and design technologies to
enable the 2.5-D scheme are explained. Finally we are going to introduce

the objectives and organization of this book.

Keywords 3-dimensional VLSI, 2.5-D integration, inter-chip contact, inter-

connection, fabrication, test, design technology.

The semiconductor industry has been and will continue to be driven by the

consumer demands for superior performance and functionality. To keep pace with



3-Dimensional VLSI—A 2.5-Dimensjonal Integration Scheme

such demands, it is essential to maintain the momentum of shrinking process
feature size so as to pack more devices on a single silicon die. As a matter of fact,
the complexity of the integrated circuit (IC) system has always been growing at
the speed delineated by the Moore’s Law since the invention of the first integrated
circuit. From the beginning of the 1990s, the speed of increasing complexity
has even been accelerated with the introduction of broadband and multimedia
applications. One such exemplar application is illustrated in Fig. 1.1, where each
dot representing the number of gates on a given generation of NVidia’s flagship
graphic processing unit (GPU)™M, The dotted line indicates the number of gates
predicted by the Moore’s Law. Clearly, the GPU chips would integrate a greater
number of transistors than that predicted by the Moore’s Law. Similar trends could

be observed in other applications domains like wireless chipsetsm.
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Figure 1.1 Actual chip complexity increases faster than Moore’s law

Despite the strong need for more silicon real estate, the basic physics laws would

not allow an unlimited scaling of device dimension. The limit would have to be

2
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reached in the next 10 —20 years, if no replacement technologies come up during
this time frame.

Meanwhile, emergent very large scale integration (VLSI) systems are incurring
overwhelming complexity as the main-stream process technology is now moving
to the 45 nm node. Among many difficulties, the following three problems are
inherent to the very nature of monolithic integration:

Interconnection Performance Historically, the functionality to be integrated
in a single chip at every technology generation has always exceeded the capacity
provided by pure scaling. To accommodate the extra transistors, the chip size has
always been increasing since the invention of the first IC™!. The problem is that, the
interconnection length, especially worst-case interconnection length, has to increase
accordingly. Starting from the 0.25 um technology node, the interconnection
delay of long on-chip wires has become the dominant part determining system
perforrna.nce[3 1 Unfortunately, interconnection delay is very hard to predict before
the circuit is actually laid out. As a result, IC architects usually take considerable
efforts to manage those long wires with the help of advanced electronic design
automation (EDA) software.

Mixed Technology Integration Modem System-on-Chips (SoCs) typically
have to integrate heterogeneous, mixed-technology components. The technology
heterogeneity certainly complicates the underlying fabrication processes. The
fabrication cost of today’s semiconductor processes is already skyrocketing with
the shrinking of the feature size!*!. A single mask set as well as the corresponding
probe for digital ASICs is reported to soon reach $5 million at the 45 nm

technology node™™?

, while the price of a finished wafer in a RF-CMOS process is
higher than that in a pure CMOS process by at least 15%!". Meanwhile, it is

worth mentioning that certain RF circuits would not benefit from a finer process



