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LIST OF SYMBOLS

area

distance, width

centroid

constants of integration
distance; diameter; depth
diameter

distance; eccentricity;
dilatation

modulus of elasticity
frequency; function

force

internal axial force
internal shear force
compressive load of columns
gravity acceleration
modulus of rigidity; shear
modulus

distance; height

radius of gyration
moment of inertia

product of inertia

polar moment of inertia
spring constant; stiffness
coefficient

stress concentration factor;
torsional spring constant
length, span

length, span

effective length

mass

couple; moment

bending moment

number; factor of safety;
ratio of cross sectional
areas; rotation speed
factor of safety for buckling
dynamic coefficient of impact
pressure

shearing force per unit length,
shear flow; load per

unit length

radius
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length; spacing

first moment of area
thickness

torque; temperature
rectangular coordinates
strain energy density
strain energy;

velocity

volume

width; distance; load per
unit length

weight; load; work
section modulus of bending
section modulus pf torsion
rectangular coordinates;
deflections

coordinates of centroid
distance from N. A. to edge
of the cross section
angles

coefficient of thermal
expansion '

shearing strain; specific
weight

displacement; deflection;
ratio of elongation of
specimen

ormal strain

shape factor of section
for shearing

slenderness ratio
coefficient of effective
length

poisson’s ratio

angle; slope

radius of curvature; distance;
density

normal stress

shearing stress

angle; angle of twist
ratio of cross section
reduction of specimen



SI Units

Selected SI units

Commonly used SI prefixes

Quantity Name SI symbol Factor Prefix SI Symbol
Energy joule J{1J=1Nem) 10° giga G
Force newton N(1 N=1 kg * m/s?) 108 mega M
Length meter® m 10% kilo k
Mass kilogram® kg 1073 milli m
Moment (torque) newion meter Nem 107 micro i
Rotational frequency revolution per second r/s 107° nano n

Stress (pressure)
Time

Power

hertz
pascal
second?®

watt

Hz(1 Hz=1 r/s)
Pa(l Pa=1 N/m?)

s

W1 W=17]/s)

@ SI base unit.

Selected Rules and Suggestions for SI Usage

1. Be careful in the use of capital and lowercase for symbols, units, and prefixes (e. g. , m for meter or milli, M for

mega).

2. In compound units formed by multiplication, use the product dot (e. g. , Nom).

3. Division may be indicated by a slash {(m/s). or a negative exponent with a product dot (m +» s7!).

4. Avoid the use of prefixes in the denominator (e. g. , km/s is preferred over m/ms). The exception to this rule is the

prefix k in the base unit kg (kilogram).

Equivalence of U. S, Customary and SI Units (Asterisks indicate exact values; others are ap proximations. )

U.S. Customary to SI

SI to U.S. Customary

1. Length

2. Area

3. Volume

4. Force

5. Mass

6. Moment of a foree

7. Stress (pressure)

8. Power

1lin. =25.4 mm=0.0254 m
1 ft=304. 8 mm=0.3048 m
1 in. 2=645. 16 mm?

1 ft* =0. 092 903 04 m?

1in, =16 387. 064 mm?®

1 {8 =0.028317 m®

11b=4.448 N

1 Ib/ft=14.594 N/m

1 lbm=0.45359 kg
1slug=14.593 kg

11b+in. =0.112 985 N*m

11b- ft=1.35582 N*m

1 1b/ft® (psf) =47. 88 Pa

1 1b/in. 2 (psi) =6. 895 kPa

1 hp (550 b = f1/5)=0.7457 kW

—

mm=29, 039 370 in.
m =39, 370 in,

=3. 2811t
mm? =10, 001550 in. ?
m? =1550.0 in. ?

—

—

=10, 764 12
mm?®=0, 000061024 in, 3
m?® =61023.7 in.?

=35, 315 i®
1 N=0.22481b
1 N/m=0. 068522 1b/ft
1 kg=2. 205 lbm
1 kg=0. 068 53 slugs
1 Nem=8, 85075 1b = in.
1 Nem=0, 73756 b » ft
1 Pa=0. 020 886 psf

=0, 000 145 03 psi
1 kW=1.3410 hp

-
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1 INTRODUCTION

1.1 THE TASK OF MECHANICS OF MATERIALS

In engineering practice, we are always dealing with structures, There are many
examples of structures such as buildings, bridges, airplanes, boats, vehicles, trains and all
kinds of machines. Structures are quite different in type, but they have a common character
that all structures bear loads. For example, buildings bear wind load, seismic load, and leoad
from residents. Bridges carry wind load, earthquake load and the load from vehicles.
Vehicles carry the load from tourists, etc. Structures consist of several main portions called
members such as rods, beams, columns, plates, shells, shafts, bolts, wheels etc. In civil
engineering, these members are called structural components, while in mechanical
engineering, they are called component parts.

Mechanics of materials studies members. Let us see what kind of requirements they
should meet when members are working. First of all, they can not be broken; otherwise the
structures including these members will collapse. Bridges can not be damaged when vehicles
are running on them, When a lathe is processing parts, its shafts can not be broken. I such
things happen, disastrous consequences will occur. In other words, members have to have
enough strength to bear the loads safely. Second, deformation or deflection of members
should be limited within some allowable ranges, For example, the deflection of a crane beam
should not be too large otherwise the card on the beam will be driven with difficulty. If the
principal shaft of a lathe has large deformation, the accuracy of the parts being processed will
not be guaranteed. That is, the members should have enough stiffness to resist deformation,
The third, members have to have stability. Right now, we are not able to give the definition
of stability, but we can give an example. We take a slender column with a compressive force
exerted on top of it. If the force is sufficiently large, the column will bend. That is, the
equilibrium state of the column with a straight-line shape becomes unstable, or the column
loses its stability. Stability is also an important requirement for members. If a column of a
building loses its stability, the building will collapse, the consequence is also catastrophic,

To meet the requirements of strength, stiffness and stability for members, we may use
the members with large size. For example we can use very thick plates, use rods with a very
large sectional area. Or we can use high-strength materials for the members. But doing so
will waste materials, raise the price of structures, as well as increase the weight of the
members. Hence, we should design economic members. If the requirements of strength,
stiffness and stability of members are satisfied, we say that the members are safe, otherwise
they fail. Safety and economy of members are in contradiction with each other. The task of

mechanics of materials is to provide a simple and practical means for analyzing the strength,



stiffness and stability of members so as to give the data for engineering design, so that the

requirements of both safety and economy are satisfied.
1.2 BASIC ASSUMPTIONS OF DEFORMABLE SOLID BODIES

If a solid body bears loads, its shape will change. This phenomenon is known as
deformation. We say that the material of the body is a deformable solid. The microstructure
of materials is quite complex. We need to make some assumptions for it to establish a
simplified mode of materials so that we can study the members easily. The assumptions are;

1. Solid bodies are continuous

The solid body is stuffed with materials. The body is absclutely solid, without any gaps
and cavities in it., In fact, a solid body always includes some gaps, cavities, voids and
inclusions, but they are so small in size in comparison with the body that they can be
neglected. Introducing this assumption, we may isolate an infinitesimal element anywhere in
the body for analyzing. And the differentiation and integration calculi can be employed for
our study. But it should be noted that the deformation of the body has to satisfy the
geometrical compatibility condition, namely, neither separation nor penetrating will occur in
materials of the body.

2. Solid bodies are homogeneous

The material property in any place of the body is the same. In other words, it is
independent of the position of the material points in the member. Thus, if a piece of material
is isolated in any place of the body, its mechanical property can represent the one of all the
material of the body. In micro viewpoint, the material is inhomogeneous. For example, steel
have inclusions of carbon and some other elements in it. But, if we isolate an element which
size is much smaller than the steel body, the element is still large enough to hold sufficiently
large number of steel and carbon crystals. Hence, the mechanical property of the element is
in fact a stochastically mean value of steel and carbon crystals. This macro property is the
same anywhere in the body. Hence, in the macro viewpoint, the material is homogeneous.
The illustration is also applicable for concrete, but the size of gravel grains may not be much
smaller than that of the concrete body. Thus, formulas in mechanics of materials are very
accurate for metallic materials, but are approximate for concrete.

3. Materials are isotropic

Material property is the same in any direction, or it is direction insensitive in the
member. We know that properties of metal crystals are different in various orientations. For
examle they are different in the side orientation and in the diagonal orientation of the lettuce
of the metal crystals. But, the orientations of crystal grains of metal are randomly
distributed. Thus, the material can be considered isotropic. Metal is isotropic, concrete is
isotropic. But some materials are anisotropic such as wood, plastic cord etc. Their
mechanical properties along the fibers and across the fibers are different.

The latter two assumptions bring us convenience for study of members since the



mechanics constants corresponding to the material properties are the same anywhere in the
member and in any direction in the member,

Besides, we have two additional conditions in our studying:

1. Materials are elastic

The shape of a member changes under the load. But the deformation disappears if the
load is removed. This nature of the material is called elasticity. Sometimes the deformation
can not be completely eliminated if the load is removed. In this case, the portion of
deformation, which can be eliminated, is called elastic deformation, the other portion which
can not be eliminated is called plastic deformation or permanent deformation. If a plastic
deformation occurs in a member, we think that the member fails already. Hence, in
mechanics of materials we only study the members in elastic deformation range.
Furthermore, if the deformation is proportional to the load, we say that the material is
linearly elastic. For convenience, we only consider that the materials are in linearly elastic
range in our study. ’

2. Deformation is very much smaller than the size of the member

In many cases, this assumption is true indeed. Hence, if the size of the member is employed in
some basic equations, e. g. equilibrium equations, we can always use the original size before
deformation of the member, This condition also brings us convenience in our study.

As a summary, we can say that in mechanics of materials, the materials are considered
to be continuous, homogeneous, isotropic, and in general, linearly elastic. The deformation

of the members is very much smaller than the member’s size.

1.3 GEOMETRICAL CHARACTERISTICS OF THE MEMBERS

In mechanics of materials, members are abstracted as rods (Fig. 1. 1(a)). Rods are
usually slender in shape. Each rod has many cross-sections. The centroids of the cross-
sections of a rod form a line called the axis or the longitudinal axis of the rod. The cross-
sections are perpendicular to the axis. The size of the cross-sections is much smaller than the
length of the rod. If the axis of a rod is a straight line, the rod is called the straight rod, if
curved, the curved rod. In mechanics of materials, we only study straight rods, and
specifically, the straight rods with uniform cross-sections. But results obtained from the
straight rods with uniform cross-sections can also be used for curved rods approximately if
their curvature radii are very much larger than the size of the cross-sections, and for the rods
with variable cross-sections if the cross-sections vary less rapidly along the axes of the rods.

Plates and shells belong to the second category of the members. The thickness of plates
and shells is much smaller than the other two dimensions. The surface which bisects the
thickness is defined as mid-surface. If the mid-surface is a plane, the member is called plate
(Fig. 1.1(b)), e. g. plates of buildings. If it is curved, the member is known as shell (Fig.
1.1(b)), e. g. the roofs of buildings. The third category of the members is the solid block,

which 3 dimensions are in the same order (Fig. 1. 1(c)). Examples are the foundations of



buildings and machines. These members, which are more complex than rods in shape, will
be studied in Theory of Elasticity.

E=——0 Bl
(a) Roed or bar -
(b) Plate and shell (¢) Solid block

Fig.1.1  Different forms of members

1.4 ANALYSIS OF INTERNAL FORCES; STRESS

There are three fundamenital areas of engineering mechanics: statics, dynamics, and
mechanics of materials, Statics and dynamics are devoted primarily to the study of the
external ef fects upon rigid bodies — that is, bodies for which the change in shape
(deformation) can be neglected. In contrast, mechanics of materials deals with the internal
ef fects and deformations that are caused by the applied loads. Both considerations are of
paramount importance in the analysis of the above-mentioned three classes of problems —
strength, stiffness and stability.

The differences between rigid-body mechanics and mechanics of materials can be
appreciated if we consider the bar shown in Fig. 1. 2. The force F required to support the
load W in the position shown can be found easily from equilibrium analysis, After we draw
the free-body diagram ‘of the bar, summing up the moments about the pin at O, we can
determine the value of F. In this solution, we assume that the bar is both rigid (the
deformation of the bar is neglected) and strong enough to support the load W. In mechanics
of materials, the statics solution is extended to include an analyéis of the forces acting inside
the bar to confirm that the bar will neither break nor deform excessively.

A
i

oﬁ[ﬁ:;

Fig. 1.2 Equilibrium analysis of a bar
to determine the force F Fig. 1.3 External forces acting on a curved bar
.1, Internal Forces
The equilibrium analysis of a rigid body is concerned primarily with the calculation of
external reactions and internal reactions (forces that act at internal connections, such as

internal pin-connections). In mechanics of material, we must extend this analysis to

.__4_



determine internal forces — the forces that act on cross sections of the body itself. In
addition, we must investigate the manner in which these internal forces are distributed
within the body. Only after these computations have been made, can the design engineer
select the proper dimensions for a member and select the material from which the member
should be fabricated. =

If the external forces that hold a body in equilibrium are known, we can compute the
internal forces by straightforward equilibrium analysis. For example, consider the bar in
Fig. 1. 3 that is loaded by the external forces F,, F,, F; and F,. To determine the internal
force system acting on the cross section labeled @, we must first isolate the segments of the
bar lying on either side of section ®. The free-body diagram of the segment to the left of
section (D is shown in Fig. 1. 4 (a). In addition to the external forces F,, F, and F,, this
free-body diagram shows the resultant force-couple system of the internal forces that are
distributed over the cross section; the resultant force Fy, acting at the centroid C of the
cross section, and My, the resultant couple (we use double-headed arrows to represent
couple-vectors). If the external forces are known, the equilibrium equation X F=0 and 3

M_:=0 can be used to compute Fy and M. This method is known as method of sections.

My
(a) Free-body diagram for determination  (b) Resolving the internal force Fy into the (c) Resolving the internal couple

of the internal force system acting axial force Fy and the shear force Fg My into the torque T and the
on the section bending moment M

Fig. 1.4 Analysis of the internal forces of the curved bar

It is conventional to represent both Fy and Mgin terms of two components; one perpendicular
to the cross section and the other lying in the cross section, as shown in Fig. 1. 4(b) and Fig. 1. 4
(c). These components ate given the following physically meaningful names.

Fy: The force component that is perpendicular to the cross section, tending to elongate
or shorten the bar, is called the normal Sorce.

Fs: The force component lying in the plane of the cross section, tending to shear (slide)
one segment of the bar relative to the other segment, is called the shear force.

T: The component of the resultant couple that tends to twist (rotate) the bar is called
the twisting moment or torque.

M: The component of the resultant couple that tends to bend the bar is called the
bending moment. .

The deformations produced by these internal forces and internal couples are shown in Fig. 1. 5.

They are known as four basic forms of deformations of the rods: axial tension or compression,



transverse shear , torsion and bending , they will be discussed in the next section,

Undeformed Elongation Shear

Twisting Benging

Fig. 1.5 Deformations produced by the components of internal forces and couples

Up to this point, we have been concerned only with the resultant of the internal force
system. However, in design, the manner in which the internal forces are distributed is
equally important. This consideration leads ug to introduce the force intensity at a point,
called stress, which plays a central role in the design of load-bearing members,

Fig. 1.6 (a) shows a small area element AA of the cross section located at the arbitrary
point O. We assume that AFy is the resultant force which is exerted in AA, with its normal
and shear components being AF, and AFs, respectively, The stress vector acting on the
cross section at point O is defined as

tau), shown in Fig, 1. 6 (b), are
AFy  dF,

a=£g})ﬁ=dA ’ r=limA—=H (1. 2)

Fig.1.6 Normal and shear stresses acting on the section at point O

The dimension of stress is [F/L*]

that is, force divided by area. In SI units, force

— 8§ —




is measured in newtons (N) and area in square meters(m?®), from which the unit of stress is
newtons per square meter (N/m’) or, equivalently, pascals (Pa): 1.0 Pa= 1.0 N/m?.
Because 1 pascal is a very small quantity in most engineering applications, §tress is usually
expressed with the SI prefix M (read as “mega”), which indicates multiples of 10°; 1. 0MPa
=1.0X10° Pa. We find that it is conventient sometimes to use 1MPa=1N/mm®.

The commonly used sign convention for axial forces is to define tensile forces as positive
and compressive forces as negative. This convention is carried over to normal stresses:
Tensile stresses are considered to be positive, compressive stresses negative. A simple sign
convention for shear stresses does not exist; a convention that depends on a coordinate
system will be introduced later in the text. If the stresses are uni formly distributed , they
can be computed from

a=% , 1':% (1. 3)
where A is the area of the cross section. If the stress distribution is not uniform, Eqs. (1.3)

should be viewed as the average stress acting on the cross section.
1.5 BASIC FORMS OF ROD DEFORMATION

In the previous section, four basic forms of rod deformation were given. In engineering
applications, it is more perceptible to show them by a free rod with the external forces
applied at its ends. According to the manner that the external forces are applied to the rod,
we have:

1. Axial tension or compression

A pair of external forces in opposite directions is applied at both ends of a rod with the
action lines coinciding with the axis of the rod. Deformation of this action is elongation or
contraction of the rod, If the external forces at both ends point into the member, the
deformation is called compression, if out of the member, tension. Examples are truss
members, For the very simple truss shown in Fig. 1. 7(a), rod AC is in axial tension while
boom BC is in axial compression.

2. Shear

There are two types of shear: transverse shear and direct shear. The common
characteristic of them is that the action lines of the external forces are perpendicular to the
axis of the rod. For transverse shear, the action lines of the external forces may be far from
one another. It can cause shearing as well as bending deformations in the rod. While for the
direct shear, the action lines of the forces are very close. Only very little bending moment is
produced in the rod. The cross section between the two adjacent and opposite forces is called
shear plane since the failure or slippage occurs along the plane. Portions on the two sides of
the section have a relative sliding, Examples are bolts, rivets, welding joints and some other
joint members (Fig. 1. 7(b)).

3. Torsion

A pair of couples in opposite sense with action planes perpendicular to the axis of the rod



is applied on the rod (Fig. 1. 7(c)). Relative rotation of sections around the axis of the rod
takes place. Transmit shafts are the examples.

4, Bending

@ Pure bending: A pair of couples in the opposite sense with the action planes
coinciding with the longitudinal plane of the rod is applied on the rod (Fig. 1. 7(d)). Relative
rotation of sections around some axes in the sections takes place. A straight axis of the rod
becomes a curved axis, called a deflection curve; @ Transverse bending: Transverse loads
act on the rod. The deformation form of transverse bending is a combination of pure bending

and transverse shearing. Members suffering bending deformation are called beams.
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Fig. 1.7 Four basic deformations

In engineering practice, members usually suffer a 4
combination of the basic deformation forms. For example, E §
deformation of transmit shafts is a combination of torsion [ {
and bending. A chimney subjected to wind load and self- :_:_ t’
weight undergoes the deformation of the combination of ] i
bending and axial compression (Fig. 1. 8). E l
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Fig.1.8 Chimney subjected to

wind load and self-weight



