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Preface

The purpose of this book is to provide an introduction to the applications of quantum
field theoretic methods to systems out of equilibrium. The reason for adding a
book on the subject of quantum field theory is two-fold: the presentation is, to my
knowledge, the first to extensively present and apply to non-equilibrium phenomena
the real-time approach originally developed by Schwinger, and subsequently applied
by Keldysh and others to derive transport equations. Secondly, the aim is to show the
universality of the method by applying it to a broad range of phenomena. The book
should thus not just be of interest to condensed matter physicists, but to physicists in
general as the method is of general interest with applications ranging the whole scale
from high-energy to soft condensed matter physics. The universality of the method,
as testified by the range of topics covered, reveals that the language of quantum
fields is the universal description of fluctuations, be they of quantum nature, thermal
or classical stochastic. The book is thus intended as a contribution to unifying the
languages used in separate fields of physics, providing a universal tool for describing
non-equilibrium states.

Chapter 1 introduces the basic notions of quantum field theory, the bose and
fermi quantum fields operating on the multi-particle state spaces. In Chapter 2, op-
erators on the multi-particle space representing physical quantities of a many-body
system are constructed. The detailed exposition in these two chapters is intended
to ensure the book is self-contained. In Chapter 3, the quantum dynamics of a
many-body system is described in terms of its quantum fields and their correla-
tion functions, the Green’s functions. In Chapter 4, the key formal tool to describe
non-equilibrium states is introduced: Schwinger’s closed time path formulation of
non-equilibrium quantum field theory, quantum statistical mechanics. Perturbation
theory for non-equilibrium states is constructed starting from the canonical operator
formalism presented in the previous chapters. In Chapter 5 we develop the real-time
formalism necessary to deal with non-equilibrium states; first in terms of matrices
and eventually in terms of two different types of Green’s functions. The diagram
representation of non-equilibrium perturbation theory is constructed in a way that
the different aspects of spectral and quantum kinetic properties appear in a physi-
cally transparent and important fashion for non-equilibrium states. The equivalence
of the real-time and imaginary-time formalisms are discussed in detail. In Chap-
ter 6 we consider the coexistence regime between equilibrium and non-equilibrium
states, the linear response regime. In Chapter 7 we develop and apply the quantum
kinetic equation approach to the normal state, and in particular consider electrons

xi
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in metals and semiconductors. As applications we consider the Boltzmann limit, and
then phenomena beyond the Boltzmann theory, such as renormalization of transport
coefficients due to interactions. In Chapter 8 we consider non-equilibrium supercon-
ductivity. In particular we introduce the quasi-classical Green’s function technique
so efficient for the description of superfluids. We derive the quantum kinetic equation
describing elastic and inelastic scattering in superconductors. The time-dependent
Ginzburg-Landau equation is obtained for a dirty superconductor. As an applica-
tion of the quasi-classical theory, we consider the phenomena of conversion of normal
currents to supercurrents and the corresponding charge imbalance.

Unlike Schwinger, nat stooping to the paganism of using diagrams, we shall, like
the boys in the basement, take heavy advantage of using Feynman diagrams. By
introducing Feynman diagrams, the most developed of our senses can become func-
tional in the pursuit of understanding quantum dynamics, an addition that shall
make its pursuit easier also for non-equilibrium situations. Though the picture of
reality that the representation of perturbation theory in terms of Feynman diagrains
inspires might be a figment of the imagination, its usefulness for developing phys-
ical intuition has amply proved its value, as witnessed first in elementary particle
physics. We develop the diagrammatics for non-equilibrium states, and show that
the additional rules for the universal vertex display the two important features of
quantum statistics and spectral properties of the interacting particles in an explicit
fashion. In Chapter 9 we shall take the stand of formulating the laws of physics in
terms of propagators and vertices and their Feynman diagrams representing prob-
ability amplitudes as dictated by the superposition principle. In fact, we take the
Shakespearian approach and construct quantum dynamics in terms of Feynman di-
agrams by invoking the only two options for a particle: to act or not to interact.
From this diagrammatic starting point, and employing the intuitive appeal of dia-
grammatic arguments, we then construct the formalism of non-equilibrium quantum
field theory in terms of the powerful functional methods; first in terms of the gen-
erating functional and functional differentiation technique. In Chapter 10 we then
introduce the final tool in the functional arsenal: functional integration, and arrive at
the effective action description of general non-equilibrium states. As an application
of the effective action approach we consider the dilute Bose gas, and the case of a
trapped Bose-Einstein condensate. In Chapter 11 we consider quantum transport
properties of disordered conductors, weak localization and interaction effects. In par-
ticular we show how the quasi-classical Green’s function technique used in describing
non-equilibrium properties of a dirty superconductor can be utilized to describe the
destruction of phase coherence in the normal state due to non-equilibrium effects
and interactions. Finally, in Chapter 12, we consider the classical limit of the devel-
oped general non-equilibrium quantum field theory. We consider classical stochastic
dynamics and show that field theoretic methods and diagrammatics are useful tools
even in the classical context. As an example we consider the flux flow properties of
the Abrikosov lattice in a type-II superconductor. We thus demonstrate the fact that
quantum field theory, through its diagrammatics and functional formulations, is the
universal language for describing fluctuations whatever their nature.

Readers’ guide. Firstly, readers bothered by the old-fashioned habit of footnotes
can simply skip them; they are either quick reminders or serve the purpose of pro-
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viding a general perspective. The book can be read chronologically but, like any fox
hole, it has two entrances. For the reader whose interest is the general structure of
quantum field theories, the book offers the possibility to jump directly to Chapter 9
where a quantum field theory is defined in terms of its propagators and vertices and
their resulting Feynman diagrams as dictated by the superposition principle. The
powerful methods of generating functionals are then constructed from the diagram-
matics. However, the reader acquainted with Chapter 4 will then have at hand the
general quantum field theory applicable to non-equilibrium states.

The scope of the book is not so much to dwell on a detailed application of the non-
equilibrium theory to a single topic, but rather to show the versatility and universality
of the method by applying it to a broad range of core topics of physics. One purpose
of the book is to demonstrate the utility of Feynman diagrams in non-equilibrium
quantum statistical mechanics using an approach appealing to physical intuition. The
real-time description of non-equilibrium quantum statistical mechanics is therefore
adopted, and the diagrammatic technique for systems out of equilibrium is developed
systematically, and a representation most appealing to physical intuition applied.
Though most examples are taken from condensed matter physics, the book is intended
to contribute to the cross-fertilization between all the fields of physics studying the
influence of fluctuations, be they quantum or thermal or purely statistical, and to
establish that the convenient technique to use is in fact that of non-equilibrium
quantum field theory. The book should therefore be of interest to a wide audience of
physicists; in particular the book is intended to be self-contained so that students of
physics and physicists in general can benefit from its detailed expositions. It is even
contended that the method is of importance for other fields such as chemistry, and
of course useful for electrical engineers.

A complete allocation of the credit for the progress in developing and applying
the real-time description of non-equilibrium states has not been attempted. However,
the references, in particular the cited review articles, should make it possible for the
interested reader to trace this information.

The book is intended to be sufficiently broad to serve as a text for a one- or
two-semester graduate course on non-equilibrium statistical mechanics or condensed
matter theory. It is also hoped that the book can serve as a useful reference book
for courses on quantum field theory, physics of disordered systems, and quantum
transport in general. It is hoped that this attempt to make the exposition as lucid as
possible will be successful to the point that the book can be read by students with
only elementary knowledge of quantum and statistical mechanics, and read with
benefit on its own. Exercises have been provided in order to aid self-instruction.

I am grateful to Dr. Joachim Wabnig for providing figures.

Jorgen Rammer



Contents

Preface

1

Quantum fields

1.1 Quantum mechanics . . . . . . . . .. ...
1.2 N-particlesystern . . . . . .. ... .. ..o
1.2.1 Identical particles . . . .. .. ... ... ...
1.2.2 Kinematics of fermions . . . . . . . ... ..o
1.2.3 Kinematicsof bosons . . . . . . .. ... ..o
1.2.4 Dynamics and probability current and density . . . ... ...
1.3 Fermifield. . . . . . . . . . .
14 Bosefield . . . . . . . .
1.4.1 Phonons . . . . . . . v v v i e
1.4.2 Quantizing a classical field theory . . . .. .. ... ... ...
1.5 Occupation number representation . . . . . .. ... ... ... .. ..
1.6 SUWIMMALY . . . .« e e e e
Operators on the multi-particle state space
2.1 Physical observables . . . . . ... ... ... .o
2.2 Probability density and number operators . . . . . . ... ...
2.3 Probability current density operator . . . . . . .. ...
2.4 Imteractions . . . . . . . . . . o e
2.4.1 Two-particle interaction . . . . .. .. ... .. ... ... ...
2.4.2 Fermion-boson interaction . . . . . . . ... .. ... ...
2.4.3 Electron—phonon interaction. . . . . . ... .. ... ...
2.5 The statistical operator . . . . . . .. ...
2.6 SUIMIMATY . - -« « v et e e e e e e
Quantum dynamics and Green’s functions
3.1 Quantumdynamics . . . . . . . .. ...
3.1.1 The Schrodinger picture . . . . . . . .. .. ... ... ...
3.1.2 The Heisenberg picture . . . . . . .. ... ... ... ... ..
3.2 Second quantization . . . .. ... .. ...
33 Green'sfunctions . . . . . .. ... ... e
3.3.1 Physical properties and Green’s functions . . . . . . ... ...
3.3.2 Stable of one-particle Green’s functions . . .. .. ... .. ..



vi

CONTENTS

3.4 Equilibrium Green’s functions . . . . ... ... 70
3.5 SUWINITALY . « ¢ o v v v o v o e m e s s e 77
Non-equilibrium theory 79
4.1 The non-equilibrium problem . . . .. ... ... ... 79
49 QGround state formalism . . . . . . . ..o oo 81
4.3 Closed time path formalism . . . . .. ... ... ... 84
4.3.1 Closed time path Green’s function . . . . . ... ... ... .. 87
4.3.2 Non-equilibrium perturbation theory . . . . .. . ... ... .. 90
4.3.3 Wick’'stheorem . . . . . . . . . . . oo 94
4.4 Non-equilibrium diagrammatics . . . . . . .. ..o 103
4.4.1 Particles coupled to a classical field . . . . . ... ... ... .. 104
4.4.2 Particles coupled to a stochastic field . . . . .. ... .. .. .. 106
4.4.3 Interacting fermions and bosons . . . . .. ... 107
4.5 Theselfenergy . . . . . . . . . . ..o 113
4.5.1 Non-equilibrium Dyson equations . . . . . . ... ... ... .. 116
452 Skeleton diagrams . . .. .. .. e e e 117
4.6 SUMIMATY . . . . o o v it o e e 119
Real-time formalism 121
5.1 Real-time matrix representation . . . . . . . . ... ... 121
5.2 Real-time diagrammatics . . . . . . . . ... ... 123
5.2.1 Feynman rules for a scalar potential . . . . . ... .. ... .. 123
5.2.2 Feynman rules for interacting bosons and fermions . . . . . . . 125
5.3 Triagonal and symmetric representations . . . . . . .. ... ... ... 127
5.3.1 Fermion-boson coupling . . . . ... ... ... ... ... 129
5.3.2 Two-particle interaction . . . . .. ... . ... ... ... ... 131
54 Therealrules: the RAK-rules . . . . . .. ... ... ... ....... 133
5.5 Non-equilibrium Dyson equations . . . . . . .. ... ... ... .. .. 135
5.6 Equilibrium Dyson equation . . . . . . .. ... ... ... ... 138
5.7 Real-time versus imaginary-time formalism . .. ... ... ... ... 140
5.7.1 Imaginary-time formaliszm . . . . .. . ... .. ... ... 140
5.7.2 Imaginary-time Green’s functions . . . . . . . ... .. ... .. 142
5.7.3 Analytical continuation procedure . . . . ... ... ... ... 143
5.7.4 Kadanoff-Baymequations . . . . . . .. ... ... ... .. .. 148
5.8 SUIMMALY . .« .« vt v v et e e e e e e 149
Linear response theory 151
6.1 Linear reSpomse . . . . . . . . .« ot e u e e e e e e e 151
6.1.1 Density TESPONSE . . . . . . o o v v e e e 152
6.1.2 Current TeSPONSE . . . . .« . v vt e e e e 155
6.1.3 Conductivitytensor . . . ... ... ... ... L 158
6.1.4 Conductance . . . . . . . . . . ..o e 159
6.2 Linear response of Green’s functions . . . . ... .. ... ....... 159
6.3 Properties of response functions . . . . . . .. ... oo 164
6.4 Stability of the thermal equilibrium state . . . . . .. ... ... ... 165



CONTENTS

6.5 Fluctuation—dissipation theorem . . . . . . .. .. ..o
6.6 Time-reversal symmetry . . . . . . .« o . .- oo e
6.7 Scattering and correlation functions . . . .. ...
6.8 SUMMALY . . - « « « « o oo s o s

7 Quantum kinetic equations
7.1 Left-right subtracted Dyson equation . . . . ... ... ...
7.2 Wigner or mixed coordinates . . . . .. ...
7.3 Gradient approximation . . . . . . ...
7.3.1 Spectral weight function . . . . .. ...
7.3.2 Quasi-particle approximation . . . . . ... ...
7.4 Impurity scattering . . . . . . . . ..o
74.1 Boltzmannian motion in a random potential . . . . . . ... ..
7492 Brownian moOtion . . . . .« < . .o e e e e e e e
7.5 Quasi-classical Green’s function technique . . . . . . ........ ..
7.5.1 Electron-phonon interaction . . . . . . . . . ...
7 5.2 Renormalization of the a.c. conductivity . . . . . . . . ... ..
7.5.3 Excitation representation . . . . . . ... .o
754 Particleconservation . . . . . . . .. ..o c
7.5.5 Impurity scattering . . . . . . . .. ...
7.6 Beyond the quasi-classical approximation . . ... ...........
7.6.1 Thermo-electrics and magneto-transport . . . . . . . . . .. ..
T SUIINATY .« + « v o v v o e e e e e e e e

8 Non-equilibrium superconductivity
81 BCS-theory . . . v o v v it
8.1.1 Nambu or particle-holespace . . . . . . .. .. ... .... ..
8.1.2 Equations of motion in Nambu-Keldysh space . . .. ... ..
8.1.3 Green’s functions and gauge transformations . . . . . ... ..
8.2 Quasi-classical Green’s function theory . . . . . . .. ... ... .. ..
8.2.1 Normalization condition . . . . . . . . . . .. ... ..
82.2 Kineticequation . . . .. ... ...
8.2.3 Spectral demsities . . . . . . .. ...
8.3 Trajectory Green’s functions. . . . . . .. . ... ...
8.4 Kinetics in a dirty superconductor . . . . .. ...
84.1 Kineticequation . .. .. ... ...
84.2 Ginzburg-Landauregime . .. .. .. ... .. ... ......
85 Chargeimbalance . . . . . . . . . ...
8.6 SUMINATY . -+« o o o v o e e e

9 Diagrammatics and generating functionals
9.1 Diagrammatics . . . . . . . . .. ..
9.1.1 Propagatorsand vertices. . . . . . . .. . ... ...
9.1.2 Amplitudes and superposition . . . . . . ... ..o
9.1.3 Fundamental dynamic relation . . .. ... ... ... ... ..
9.1.4 Loworder diagrams . . . . . . . . . .« . oo

vii

169
173
174
178



CONTENTS

viii
0.2 Generating functional . . . .. ..o 270
021 Functional differentiation . . . ... .. ... ... 272
9.2.2 From diagrammatics to differential equations . . . .. ... .. 274
9.3 Connection to operator formalism. . . . . .. ... .. .. ... ... 281
9.4 Fermions and Grassmann variables . . . . .. ... .. .. ... 282
9.5 Qenerator of connected amplitudes . . . . . . . ..o 284
9.5.1 Source derivative proof . . . . . . ... oo 284
9.5.2 Combinatorial proof . . . . . . . ... 290
9.5.3 Functional equation for the generator . . . . ... ..... .. 294
9.6 One-particle irreducible vertices . . . . . . . . .. ... 296
9.6.1 Symmetry brokenstates . . . . ... ..o 301
0.6.2 Green’s functions and one-particle irreducible vertices . . . . . 302
9.7 Diagrammatics and action . . . . ... ..o 306
9.8 Effective action and skeleton diagrams . . . . . . . .. .. ... 307
0.9 SUMINATY . . « « « o v o o b e e e 312
10 Effective action 313
10.1 Functional integration . . . . . . . . . .« ..o 313
10.1.1 Functional Fourier transformation . . .. . .. .. ... .. .. 314
10.1.2 Gaussian integrals . . . . . . . .. ... .o 315
10.1.3 Fermionic path integrals . . . . . . . ... .. ... .. ... 319
10.2 Generators as functional integrals . . . . .. ... ... ..o 320
10.2.1 Buclid versus Minkowski . . . . . . . . ... ... ... ... . 323
10.2.2 Wick’s theorem and functionals . . . . . . . .. .. .. ... .. 324
10.3 Generators and 1PI vacuum diagrams . . . . . . . . . . . .. ... 330
10.4 1PI loop expansion of the effective action . . .. ... .... ... .. 333
10.5 Two-particle irreducible effective action . . . . .. ... ... ... .. 339
10.5.1 The 2PI loop expansion of the effective action . . . . . . . . .. 346
10.6 Effective action approach to Bose gases . . . . . . ... ... ... .. 351
10.6.1 Dilute BOSe 8SE5 . . . . . . v o oo e e e 351
10.6.2 Effective action formalism for bosons . . . . . . . . .. ... .. 352
10.6.3 Homogeneous Bosegas . . . . . . . . . ... ... ... 356
10.6.4 Renormalization of the interaction . . . . . .. .. ... .. .. 359
10.6.5 Inhomogeneous Bosegas. . . . . .. ... ... ... ... ... 363
10.6.6 Loop expansion for a trapped Bosegas . . . . . . . ... .. .. 365
10.7 SUIMIMATY . .« « « o o o v o o e e e e e e 372
11 Disordered conductors 373
11.1 Localization . . . . . . . v v i e e e e e 373
11.1.1 Scaling theory of localization . . . . ... ... .. ....... 374
11.1.2 Coherent backscattering . . . . . . . . .. ... .. ... 377
11.2 Weak localization . . . . . . . . . . . . . . 388
11.2.1 Quantum correction to conductivity . . . . . ... .. ... .. 388
11.2.2 Cooperon equation . . . . . . . . . ..o 392
11.2.3 Quantum interference and the Cooperon . . . . . ... ... .. 398

11.2.4 Quantum interference in a magnetic field . . .. ... ... .. 402



CONTENTS

11.2.5 Quantum interference in a time-dependent field

Phase breaking in weak localization
11.3.1 Electron—phonon interaction
11.3.2 Electron—electron interaction
Anpomalous magneto-resistance

11.3

11.4

11.4.1 Magneto-resistance in thin films

11.5
11.6
11.7

Coulomb interaction in a disordered
Mesoscopic fluctuations
Summary

12 Classical statistical dynamics

12.1 Field theory of stochastic dynamics

conductor . . . . . . ... .-

12.1.1 Langevin dynamics

12.1.2 Fluctuating linear oscillator

12.1.3 Quenched disorder

12.1.4 Dynamical index notation

12.1.5 Quenched disorder and diagrammatics
12.1.6 Over-damped dynamics and the Jacobian
12.2Magnetic properties of type-II superconductors

12.2.1 Abrikosov vortex state
12.2.2 Vortex lattice dynamics .
Field theory of pinning
12.3.1 Effective action

12.3 Field theory of pinning . . . . . .
12.4
12.4.1 Hartree approximation . .
Single vortex
12.5.1 Perturbation theory
12.5.2 Self-consistent theory
12.5.3 Simulations
12.5.4 Numerical results
12.5.5 Hall force
Vortex lattice
12.6.1 High-velocity limit
12.6.2 Numerical results
12.6.3 Hall force
Dynamic melting
Summary

12.5

12.6 A

12.7
12.8

Appendices
A Path integrals

B Path integrals and symmetries

Self-consistent theory of vortex dynamics

C Retarded and advanced Green’s functions

D Analytic properties of Green’s functions

ix

404
408
410
416
423
424
428
437
448

449
450
450
451
454
455
457
459
460
460
462
464
467
469
470
a72
473
474
476
476
482
487
488
489
492
493
500

501
503
511
513

517



x CONTENTS

Bibliography 523

Index 531



1

Quantum fields

Quantum field theory is a necessary tool for the quantum mechanical description
of processes that allow for transitions between states which differ in their particle
content. Quantum field theory is thus quantum mechanics of an arbitrary number of
particles. It is therefore mandatory for relativistic quantum theory since relativistic
kinematics allows for creation and annihilation of particles in accordance with the
formula for equivalence of energy and mass. Relativistic quantum theory is thus in-
herently dealing with many-body systems. One may, however, wonder why quantum
field theoretic methods are so prevalent in condensed matter theory, which consid-
ers non-relativistic many-body systems. The reason is that, though not mandatory,
it provides an efficient way of respecting the quantum statistics of the particles,
i.e. the states of identical fermions or bosons must be antisymmetric and symmet-
ric, respectively, under the interchange of pairs of identical particles. Furthermore,
the treatment of spontaneously symmetry broken states, such as superfluids, is fa-
cilitated; not to mention critical phenomena in connection with phase transitions.
Furthermore, the powerful functional methods of field theory, and methods such as
the renormalization group, can by use of the non-equilibrium field theory technique
be extended to treat non-equilibrium states and thereby transport phenomena.

It is useful to delve once into the underlying mathematical structure of quantum
field theory, but the upshot of this chapter will be very simple: just as in quan-
tum mechanics, where the transition operators, {¢)(1|, contain the whole content of
quantum kinematics, and the bra and ket annihilate and create states in accordance
with

() (®) 1x) = (¥Ix) 14) (1.1)

we shall find that in quantum field theory two types of operators do the same job.
One of these operators, the creation operator, al, is similar in nature to the ket in
the transition operator, and the other, the annihilation operator, a, is similar to
the action of the bra in Eq. (1.1), annihilating the state it operates on. Then the
otherwise messy obedience of the quantum statistics of particles becomes a trivial
matter expressed through the anti-commutation or commutation relations of the
creation and annihilation operators.



2 1. Quantum fields

1.1 Quantum mechanics

A short discussion of quantum mechanics is first given, setting the scene for the
notation. In quantum mechanics, the state of a physical system is described by a
vector, |1}, providing a complete description of the system. The description is unique
modulo a phase factor, i.e. the state of a physical system is properly represented by
a ray, the equivalence class of vectors ¢ |v), differing only by an overall phase factor
of modulo one.

We consider first a single particle. Of particular intuitive importance are the
states where the particle is definitely at a given spatial position, say x, the corre-
sponding state vector being denoted by |x). The projection of an arbitrary state onto
such a position state, the scalar product between the states,

P(x) = (Y, (1.2)

specifies the probability amplitude, the so-called wave function, whose absolute square
is the probability for the event that the particle is located at the position in question.?
The states of definite spatial positions are delta normalized

(x|x"y = d(x-x"). (1.3)

Of equal importance is the complementary representation in terms of the states
of definite momentum, the corresponding state vectors denoted by |p). Analogous to
the position states they form a complete set or, equivalently, they provide a resolution
of the identity operator, I, in terms of the momentum state projection operators

/dp pYpl = I (1.4)

The appearance of an integral in Eq. (1.4) assumes space to be infinite, and the
(conditional) probability amplitude for the event of the particle to be at position x
gwen it has momentum p is specified by the plane wave function

1 in.x
(x|p) = We"p ) (1.5)

the transformation between the complementary representations being Fourier trans-
formation. The states of definite momentum are therefore also delta normalized?

(plp’) = dp-p). (1.6)

The possible physical momentum values are represented as eigenvalues, p|p) =
p|p), of the operator

p = /dpp|p><p| (1.7)

!Treating space as a continuum, the relevant quantity is of course the probability for the particle
being in a small volume around the position in question, P(x)Ax = |(x)|?Ax, the absolute square
of the wave function denoting a probability density.

21f the particle is confined in space, say confined in a box as often assumed, the momentum states
are Kronecker normalized, (p|p’) = 6, /.
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representing the physical quantity momentum. Similarly for the position of a particle.
The average value of a physical quantity is thus specified by the matrix element of
its corresponding operator, say the average position in state |3} is given by the three
real numbers composing the vector {1|%X|¢). In physics it is customary to interpret a
scalar product as the value of the bra, a linear functional on the state vector space,
on the vector, ket, in question.>

The complementarity of the position and momentum descriptions is also expressed
by the commutator, [%, p] = %X p — P X, of the operators representing the two physical
quantities, being the c-number specified by the quantum of action

[%,p] = ih. (1.8)

The fundamental position and momentum representations refer only to the kine-
matical structure of quantum mechanics. The dynamics of a system is determined
by the Hamiltonian H=H (P, %), the operator specified according to the correspon-
dence principle by Hamilton’s function H(p, X), i.e. for a non-relativistic particle of
mass m in a potential V(x) the Hamiltonian, the energy operator, is

H = -2‘% + V(&) . (1.9).

It can often be convenient to employ the eigenstates of the Hamiltonian
Hlex) = exler). (1.10)

The completeness of the states of definite energy, |€x), is specified by their resolution
of the identity
D laXal=1 (1.11)
)

here using a notation corresponding to the case of a discrete spectrumn.

At each instant of time a complete description is provided by a state vector, |1(t)),
thereby defining an operator, the time-evolution operator connecting state vectors at
different times

(@) = Ut) () - ; (1.12)
Conservation of probability, conservation of the length of a state vector, or its nor-
malized scalar product {¥(¢)|%(t)) = 1, under time evolution, determines the evo-
lution operator to be unitary, U~1(t,t') = Ut(¢,t'). The dynamics is given by the
Schrédinger equation
- d(0)
dt

= Hp() (1.13)
and for an isolated system the evolution operator is thus the unitary operator
U(t,t) = e KHE ) (1.14)

Here we have presented the operator calculus approach to quantum dynamics, the
equivalent path integral approach is presented in Appendix A.

3For a detailed introduction to quantum mechanics we direct the reader to chapter 1 in reference

(1]
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In order to describe a physical problem we need to specify particulars, typically in
the form of an initial condition. Such general initial condition problems can be solved
through the introduction of the Green’s function. The Green’s function G(x, t;x’,t’)
represents the solution to the Schrédinger equation for the particular initial condition
where the particle is definitely at position x’ at time ¢/

t]g\ntnl P(x,t) = §(x—x) = (x,t'|x',t). (1.15)

The solution of the Schrodinger equation corresponding to this initial condition there-
fore depends parametrically on x’ (and #'), and is by definition the conditional prob-
ability density amplitude for the dynamics in question®

Uwr o (X,8) = (x,t]x',¢') = U@, t)x") = Gx, t;x,t) . (1.16)

The Green’s function, defined to be a solution of the Schrédinger equation, satis-

fies 8
(ihgt— — H(—ihvx,x)) Gx, t;x',t'y=0 (1.17)

where, according to Eq. (1.3), the Hamiltonian in the position representation, f, is
specified by the position matrix elements of the Hamiltonian

(x|H|xX') = H(—ikVyx,x) 6(x —x') . (1.18)

The Green’s function, G, is the kernel of the Schrédinger equation on integral
form (being a first order differential equation in time)

P(x,t) = /dx'G(x,t;x',t')t/)(x',t') (1.19)

as identified in terms of the matrix elements of the evolution operator by using the
resolution of the identity in terms of the position basis states

(xlp(t) = /dx'<x|ff(t,t')|x'><x'|¢(t')>. (1.20)

The Green’s function propagates the wave function, and we shall therefore also refer
to the Green’s function as the propagator. It completely specifies the quantum
dynamics of the particle.

We note that the partition function of thermodynamics and the trace of the
evolution operator are related by analytical continuation:

z = ’I‘re‘ﬂ/"T:/dx (x|le”H/*T|x) = TrU(—ih/kT,0)

= /dx G(x, —ih/kT;x,0) (1.21)

4In the continuum limit the Green’s function is not a normalizable solution of the Schradinger
equation, as is clear from Eq. (1.15).
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showing that the partition function is obtained from the propagator at the imaginary
time 7 = —th/kT. The formalisms of thermodynamics, i.e. equilibrium statistical
mechanics, and quantum mechanics are thus equivalent, a fact we shall take advan-
tage of throughout. The physical significance is the formal equivalence of quantum
and thermal fluctuations.

Quantum mechanics can be formulated without the use of operators, viz. using
Feynman’s path integral formulation. In Appendix A, the path integral expressions
for the propagator and partition function for a single particle are obtained. Various
types of Green’s functions and their properties for the case of a single particle are
discussed in Appendix C, and their analytical properties are considered in Appendix
D.’

1.2 N-particle system

Next we consider a physical system consisting of N particles. If the particles in an
assembly are distinguishable, i.e. different species of particles, an orthonormal basis
in the N-particle state space HM) = H; ® Ho ® --- ® Hy is the (tensor) product
states, for example specified in terms of the momentum quantum numbers of the
particles

P, P2, --- ,PN) = [P1)® P2)® - ®lpn) = IP1)lp2) - Ipv) - (1.22)

We follow the custom of suppressing the tensorial notation.

Formally everything in the following, where an N-particle system is considered,
is equivalent no matter which complete set of single-particle states are used. In prac-
tice the choice follows from the context, and to be specific we shall mainly explicitly
employ the momentum states, the choice convenient in practice for a spatially trans-
lational invariant system.® These states are eigenstates of the momentum operators

f)i |p17p27 ’pN> = P; Ip17p2, .- 7pN)7 (123)
where tensorial notation for operators are suppressed, i.e.
pi=he L.9ep®liae -Iv, (1.24)

each operating in the one-particle subspace dictated by its index. In particular the
N-particle momentum states are eigenstates of the total momentum operator

N
Py =D B (1.25)
=1

5In the next sections we shall mainly use the momentum basis, and refer in the following to
the quantum numbers labeling the one-particle states as momentum, although any complete set
of quantum numbers could equally well be used. The N-tuple (p1,p2, -.- ,PN) is a complete
description of the N-particle system if the particles do not posses internal degrees of freedom. In
the following, where we for example have electrons in mind, we suppress for simplicity of notation
the spin labeling and simply assume it is absorbed in the momentum labeling. If the particles
have additional internal degrees of freedom, such as color and flavor, these are included in a similar
fashion. If more than one type of species is to be considered simultaneously the species type, say
quark and gluon, must also be indicated.



