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Preface

Algebraic K-theory is the branch of algebra dealing with linear algebra
(especially in the limiting case of large matrices) over a general ring R
instead of over a field. It associates to any ring R a sequence of abelian
groups K;(R). The first two of these, Ko and K}, are easy to describe in
concrete terms; the others are rather mysterious. For instance, a finitely
generated projective R-module defines an element of Ky(R), and an invert-
ible matrix over R has a “determinant” in K;(R). The entire sequence of
groups K;(R) behaves something like a homology theory for rings.

Algebraic K-theory plays an important role in many areas, especially
number theory, algebraic topology, and algebraic geometry. For instance,
the class group of a number field is essentially Ko(R), where R is the ring
of integers, and “Whitehead torsion” in topology is essentially an element
of Ki(Zr), where 7 is the fundamental group of the space being stud-
jed. K-theory in algebraic geometry is basic to Grothendieck’s approach
to the Riemann-Roch problem. Some formulas in operator theory, involv-
ing determinants and determinant pairings, are best understood in terms
of algebraic K-theory. There is also substantial evidence that the higher
K-groups of fields and of rings of integers are related to special values of
L-functions and encode deep arithmetic information.

This book is based on a one-semester course I gave at the University
of Maryland in the fall of 1990. Most of those attending were second- or
third-year graduate students interested in algebra or topology, though there
were also a number of analysis students and faculty colleagues from other
areas. I tried to make the course (and this book) fairly self-contained, and
to assume as a prerequisite only the standard one-year graduate algebra
course, based on a text such as [Hungerford], [Jacobson], or [Lang], and the
standard introductory graduate course on algebraic and geometric topol-
ogy, covering the fundamental group, homology, the notions of simplicial
and CW-complex, and the definition and basic properties of manifolds. As
taught at Maryland, the graduate algebra course includes the most basic
definitions and concepts of category theory; a student who hasn’t yet seen
these ideas could consult any of the above algebra texts or an introduc-
tion to category theory such as {Mac Lane]. Since many graduate algebra
courses do not include much in the way of algebraic number theory, I have
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included many topics such as the basic theory of Dedekind rings and the
Dirichlet unit theorem, which may be familiar to some readers but not
to all. I’ve tried in this book to presuppose as little topology as possible
beyond a typical introductory course, and to develop what is needed as
{ go along, but to give the reader a flavor of some of the important ap-
plications of the subject. A reader with almost no topology background
should still be able to follow most of the book except for parts of Sections
1.6, 1.7, 2.4, 4.4, and 6.3, and most of Chapter 5 (though I would hope
this book might encourage him or her to take a more systematic course
in topology). A problem one always has in writing a book such as this
is to decide what to do about spectral sequences. They are usually not
mentioned in first-year graduate courses, and yet they are indispensable
for serious work in homological algebra and K-theory. To avoid having
to give an introduction to spectral sequences which might scare off many
:eaders, I have avoided using spectral sequences directly anywhere in the
text. On the other hand, I have made indirect reference to them in many
laces, so that the reader who has heard of them will often see why they
«re relevant to the subject and how they could be used to simplify some of
the proofs.

For the most part, this book tends to follow the notes of the original
course, with a few additions here and there. The major exceptions are
that Chapters 3 and 5 have been greatly expanded, and Chapter 6 on
cyclic homology has been added even though there was no time for it in
the original course. Cyclic homology is a homology theory for rings which
may be viewed as the “linearized version” of algebraic K-theory, and it’s
becoming increasingly clear that it is both a useful computational tool and
a subject of independent interest with its own applications.

Each chapter of this book is divided into sections, and I have used a
single numbering system for all theorems, lemmas, exercises, definitions,
and formulas, to make them easier to locate. Thus a reference such as
1.4.6 means the 6th numbered item in Section 4 of Chapter 1, whether
that item is a theorem, a corollary, an exercise, or a displayed formula.
The exercises are an integral part of the book, and I have tried to put at
least one interesting exercise at the end of every section. The reader should
not be discouraged if he finds some of the exercises too difficult, since the
exercises vary from the routine to the very challenging.

I have used a number of more-or-less standard notations without special
reference, but the reader who is puzzled by them will be able to find most
of them listed in the Notational Index in the back of the book.

‘Why This Book?

The reader might logically ask how this book differs from its “competi-
tion.” [Bass] remains an important reference, but it is too comprehensive
to use as a text for an elementary course, and also it predates the defini-
tion of K7, let alone of higher K-theory or of cyclic homology. My original
course was based on the notes by Milnor [Milnor], which are highly recom-
mended. However, I found that [Milnor] is hard to use as a textbook, for
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the following three reasons:

(1) Milnor writes for a working mathematician, and sometimes leaves
out details that graduate students might not be able to provide for
themselves.

(2) There are no exercises, at least in the formal sense.

(3) The subject has changed quite a bit since Milnor’s book was writ-
ten.

For the working algebraist already familiar with the contents of [Milnor]
who wants to learn about Quillen K-theory and its applications in alge-
braic geometry, [Srinivas] is an excellent text, but it would have been far
beyond the reach of my audience. The notes of Berrick [Berrick] give a
more elementary introduction to Quillen K-theory than [Srinivas], but are
rather sketchy and do not say much about applications, and thus again are
not too suitable for a graduate text. And [LluisP] is very good for an up-
to-date survey, but is, as the title says, an overview rather than a textbook.
For cyclic homology, the recent book by Loday [LodayCH] is excellent, but
to be most useful requires the reader already to know something about
K-theory. Also, I do not believe that there is any book available that dis-
cusses the applications of algebraic K-theory in functional analysis (which
are discussed here in 2.2.10-2.2.11, 4.4.19-4.4.24, 4.4.30, 6.3.8-6.3.17, and
6.3.29-30). Thus for all these reasons it seemed to me that another book
on K-theory is needed. I hope this book helps at least in part to fulfill that
need.
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1
Ky of Rings

1. Defining K|

K-theory as an independent discipline is a fairly new subject, only about
35 years old. (See [Bak] for a brief history, including an explanation of the
choice of the letter K to stand for the German word Klasse.) However,
! special cases of K-groups occur in almost all areas of mathematics, and
particular examples of what we now call K, were among the earliest stud-
ied examples of abelian groups. More sophisticated examples of the idea of
the definition of Ky underlie the Euler-Poincaré characteristic in topology
and the Riemann-Roch theorem in algebraic geometry. (The latter, which
motivated Grothendieck’s first work on K-theory, will be briefly described
below in §3.1.) The Euler characteristic of a space X is the alternating sum
of the Betti numbers; in other words, the alternating sum of the dimen-
sions of certain’ vector spaces or free R-modules H;(X; R) (the homology
groups with coeflicients in a ring R). Similarly, when expressed in modern
language, the Riemann-Roch theorem gives a formula for the difference of
the dimensions of two vector spaces (cohomology spaces) attached to an
algebraic line bundle over a non-singular projective curve. Thus both in-
volve a formal difference of two free modules (over a ring R which can
be taken to be C). The group Ko(R) makes it possible to define a similar
formal difference of two finitely generated projective modules over any
ring R. ,

We begin by recalling the definition and a few basic properties of pro-
jective modules. Unless we say otherwise, we shall assume all rings
have a unit, we shall require all ring homomorphisms to be unit-
preserving, and we shall always use the word module to mean
“left module.”

1.1.1. Definition. Let R be a ring. A projective module over R
means an R-module P with the property that any surjective R-module
homomorphism & : M — P has a right inverse 8 : P — M. An equivalent
way of phrasing this is that whenever one has a diagram of R-modules and

I




2 1. Ko of Rings

R-module maps
P

G

with M >, N surjective, one can fill this in to a commutative diagram

MY

P
9/ l‘p
M —Y N

Indeed, given the diagram-completion property and a surjective R-mod-
ule homomorphism « : M — P, one can take N = P, ¢ = idp, and
¥ = a, and the resulting § : P — M is a right inverse for «, i.e., satisfies
aol =1id P.

In the other direction, suppose any surjective R-module homomorphism
a: M — P has a right inverse # : P — M, and suppose one is given a
diagram of R-modules and R-module maps

P
|e
M—¢—7N

with M % N surjective. Replacing M 2N by M P Yoide, N @& P

and ¢ : P — N by (p, idp) : P — N @ P, we may suppose g is one-to-one,
and then replacing N by the image of ¢ and M by ¥ ~!(im ), we may
assume it’s an isomorphism. Then take a = ¢! o ¢/ and the right inverse
3 : P — M enables us to complete the diagram.

When a : M — P is surjective and 8 : P — M is a right inverse for a,
then p = B o a is an idempotent endomorphism of M, since

(Boa)?=(Boa)o(Boa)
=fo(aocfB)oa
= foidpoa = Boa,
and then z — (a(z), (1 —p)(z)) gives an isomorphism M = P& (1 —p)(M).

Using this observation, we can now prove the fundamental characteriza-
tion of projective modules.

1.1.2. Theorem. Let R be a ring. An R-module is projective if and only
if it is isomorphic to a direct summand in a free R-module. It is finitely
generated and projective if and only if it is isomorphic to a direct summand
in R™ for some n.

Proof. If P is projective, choose a free module F’ and a surjective R-mod-
ule homomorphism a : F' — P by taking F' to be the free module on some
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generating set for P, and « to be the obvious map sending a generator of F
to the corresponding generator of P. We are using the universal property of
a free module: To define an R-module homomorphism out of a free module,
it is necessary and sufficient to specify where the generators should go. If
P is finitely generated, then F will be isomorphic to R™ for some n. The
observation above then shows P is isomorphic to a direct summand in a
free R-module, which we can take to be R” for some n if P is finitely
generated.

For the converse, observe first that free modules F' are projective, since
given : surjective R-module homomorphism « : M — F with F free, one
can fo1 each generator z; of F' choose some y; € M with a(y;) = z;, and
then (e can define a right inverse to a by using the universal property
of a fiee module to define an R-module homomorphism 3 : FF — M with
B(z;) == yi. Next, suppose F = P® @ and F is a free module. Given a
surjective R-module homomorphism a : M — P, o @ idg is a surjective
R-module homomorphism (M & Q) — (P @ Q) = F, so it has a right
inverse. Now restrict this right inverse to P and project into M to get a
right inverse for a. Finally, if ¥ = R™ with standard generators z,,...,Zn,
then P is generated by p(z;), where p is the identity on P and 0 on Q.
Thus a direct summand in R™ is finitely generated and projective. O

We're now almost ready to define Ky of a ring R. First of all, note that
the isomorphism classes of finitely generated projective modules over R
form an abelian semigroup Proj R, in fact a monoid, with @ as the addition
operation and with the 0-module as the identity element. To see that this
makes sense, there are a few easy things to check. First of all, Proj R is a
set! (This wouldn’t be true if we didn’t take isomorphism classes, but in
fact we have a very concrete model for Proj R as the set of split submodules
of the R™, n € N, divided out by the equivalence relation of isomorphism.)
Secondly, direct sum is well defined on isomorphism classes, i.e., if P = P’
and Q = @', then P®Q = P'&®Q’. And thirdly, direct sum is commutative
(P& Q= Q@ P) and associative (PO Q)P V =X P& (Q & V)) once we
pass to isomorphism classes.

In general, though, Proj R is not a group, and may not cven have the
cancellation property

a+b=c+b=a=c

It’s therefore convenient to force it into being a group, even though this
may result in the loss of some information. The idea of how to do this is
very simple and depends on the following, which is just a generalization of
the way Z is constructed from the additive semigroup of positive integers, or
QX is constructed from the multiplicative semigroup of non-zero integers,

or a ring is “localized” by the introduction of formal inverses for certain
elements.

1.1.3. Theorem. Let S be a commutative semigroup (not necessarily
having a unit). There is an abelian group G (called the Grothendieck
group or group completion of S), together with a semigroup homo-

—
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morphism ¢ : S — G, such that for any group H and homomorphism
¥ : S — H, there is a unique homomorphism 6 : G — H with ¢ = 8 o .

Uniqueness holds in the following strong sense: if ¢’ : § — G’ is any
other pair with the same property, then there is an isomorphism o : G — G’
with ¢’ = a o .

Proof. We will outline two constructions. The simplest is to define G
to be the set of equivalence classes of pairs (z, y) with =, y € S, where
(z, y) ~ (u, v) if and only if there is some t € S such that

(1.1.4) r+v+it=u+y+t inS.

Denote by [(z, y)] the equivalence class of (z, y). Then addition is dcfined
" by the rule

(=, W]+ (@, ¥)] =z + 2", y +¢/)}.

(It is eacy to see that this is consistent with the equivalence relation, and
that the associative rule holds.)
Note that for any = and y in 5,

{{z, )] = (¥, ¥)]

since z +y = y + z. Let 0 be this distinguished element [(z, x)]. This is an
identity element for G, i.e., G 1s a monoid, since for any z, ¥, and ¢t in S,

(c+t,y+1t)~(z,y)
Also, (G is a group since
(=, W+ {(w, D) =z +y, z+y)] = 0.
We define ¢ : S — G by
o) = [(z + =, z)],

and it is easy to see that this is a homomorphism. Note that the image of
@ generates G as a group, since

[(z, ¥)] = p(x) — @(y)

in G. Given a group H and homomorphism v : § — H, the homomorphism
8 : G — H with ¢ = 8 o ¢ is defined by

0 ([(z, »)]) = ¥(z) — P(¥)-

Alternatively, one may define G to be the free abelian group on gen-
erators [z], z € S, divided out by the relations that if z + y = 2 in S,
then the elements [z} + [y] = {z] in G. Note that [(x, y)] in the previous
construction corresponds to [z] — [y] in this second construction. The map
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¢ is z — [z], and of course any homomorphism from § into a group H
must factor through G by construction.

To prove the uniqueness, suppose ¢’ : S — G’ has the same universal
property. First of all, ¢/(S) must generate G, since otherwise, if G” is the

subgroup generated by the image of ¢’, then there are two homomorphisms
0:G — G &G /G with

(¢, 0) = 0oy,

namely, 0 = (id, 0) and 8 = (id, ¢q), g the quotient map. By the universal
properties for G and G’, there must be maps a : G — G’ with ¢’ = aoyp
and 8 : G’ — G with ¢ = o ¢’. But then a o § = id on the image of ¢’,
hence on all of &, so a is a left inverse to 3. Similarly § o « = id on the
image of ¢; hence « is also a right inverse to 3, as required. O

Remarks. The assignment S ~ G = G(S) is in fact a functor from the
category of abelian semigroups to the category of abelian groups, since if
v :8 — 8 is a homomorphism of semigroups, it induces a commutative
diagram

s X, g

| /|
G(s) —— G(S),

where the arrow at the bottom is uniquely determined by the universal
property of G(S).

In fancier language, Theorem 1.1.3 just asserts that the forgetful functor
F from the category of abelian groups to the category of abelian semigroups
has a left adjoint, since

HomSemigroups(S, FH) = HomGroups(Ga H)

This could also have been deduced from the adjoint functor theorem (see
[Freyd] or [Mac Lane}).

It is convenient that we do not have to assume that cancellation (z+2z =
¥+ 2z = r = y) holds in §. Indeed, the map ¢ : S — G is injective if
and only if cancellation holds in S. One of the reasons for introducing
Grothendieck groups is that semigroups without cancellation are usually
very hard to handle; yet in many cases their Grothendieck groups are fairly
tractable.

1.1.5. Definition. Let R be a ring (with unit). Then Ko(R) is the
Grothendieck group (in the sense of Theorem 1.1.3) of the semigroup Proj R
of isomorphism classes of finitely generated projective modules over .
Note that Ky is a functor; in other words, if ¢ : R — R’ is an R-
module homomorphism, there is an induced homomorphism Ko(¢) = ¢, :
Ko(R) — Ko(R') satisfying the usual conditions id, = id, (po). = p.ot..
To see this, observe first that ¢ induces a homomorphism Proj R — Proj /2’

I




6 1. Ko of Rings

via [P} — [R' ®, P}, for P a finitely generated projective module over R.
As required, R’ ®, P is finitely generated and projective over R/, since if
P® Q= R", then

(RF®, P)® (R ®, Q) =R ®,(P®Q)= (R ®, R*)=R".

And of course, the tensor product commutes with direct sums so we get a
homomorphism. Functoriality of Ko now follows from functoriality of the
Grothendieck group construction.

1.1.6. Example. If R is a field, or more generally a division ring (i.e.,
a skew-field), then any finitely generated R-module is a finitely generated
R-vector space and so has a basis and a well-defined dimension. This
dimension is the only isomorphism invariant of the module, so we see
that ProjR = N, the additive monoid of natural numbers. Since the
group completion of N is Z, Ko(R) = Z, with the isomorphism induced
by the dimension isomorphism Proj R — N. The inclusion of a field F
into an extension field F” induces the identity map from Z to itself, since
dimg/ (F' ® p P) = dimp P for any F-vector space P.

This same example also shows why we only use finitely generated
projective modules in defining Kg. If R is a field, the same arguments
show that the monoid of isomorphism classes of countably generated
modules is isomorphic to the extended natural numbers NU {oo}, with the
usual rule of transfinite arithmetic, n+ 0o = co for any n. This is no longer
a monoid with cancellation; in fact, any two elements become isomorphic
after adding oo to each one. Thus the Grothendieck group of this monoid is
trivial. A similar phenomenon happens with infinitely generated modules
over an arbitrary ring; see Exercise 1.1.8.

1.1.7. Exercise. Let S be the abelian monoid with elements a,,, ., where
n € N, and

m=0ifn=0o0rl,
meZifn=2,
meZ/2if n>3.

The semigroup operation is given by the formula

Qn,m + An/ m/ = Gnin’, m+m’,

where m +m’ is to be computed in Z if n+n’ < 2andin Z/2 if n+n’ > 3.
(If for instance n = 2 and n’ > 1, then m is to be interpreted mod 2.)
We shall see in §1.6 that S is isomorphic to Proj R with R = C®(S?), the
continuous real-valued functions on the 2-sphere. Compute G(S) and the
map ¢ : S — G(S5). Determine the image of S in G, and show that while
v 1(0) = 0, v is not injective.




2. Ko from idempotents 7

1.1.8. Exercise (the “Eilenberg swindle”). Show that for any ring
R, the Grothendieck group of the sémigroup of isomorphism classes of
countably generated projective R-modules vanishes.

1.1.9. Exercise. Recall that if a ring R is commutative, then every left
R-module is automatically a right R-module as well, so that the tensor
product of two left R-modules makes sense.

(1) Show that the tensor product of two finitely generated projective
modules is again finitely generated and projective.

(2) Show that the tensor product makes Ko(R) into a commutative
ring with unit. (The class of the free R-module R is the unit
element.)

2. Kg from idempotents

There is another approach to Ky which is a little more concrete and there-
fore often convenient. If P is a finitely generated projective R-module, we
may assume (replacing P by an isomorphic module) that P & Q = R for
some n, and we can consider the R-module homomorphism p from R" to
itself which is the identity on P and 0 on Q. Clearly p is idempotent, i.e.,
p? = p. Since any R-module homomorphism R" — R™ is. determined by
the n coordinates of the images of each of the standard basis vectors, it
corresponds to multiplication on the right (since R is acting on the left)
by an n x n matrix. In other words, P is given by an idempotent n x n
matrix p which determines P up to isomorphism.

On the other hand, different idempotent matrices can give rise to the
same isomorphism class of projective modules. (When R is a field, the only
invariant of a projective module P is its dimension, which corresponds to
the rank of the matrix p. When the characteristic of the field is zero, the
rank of an idempotent matrix is just its trace.) So to compute Ko(R) from
idempotent matrices, we need to describe the equivalence relation on the
idempotent matrices that corresponds to isomorphism of the corresponding
modules.

1.2.1. Lemma. If p and q are idempotent matrices over a ring R (of
possibly different sizes), the corresponding finitely generated projective R-
modules are isomorphic if and only if it is possible to enlarge the sizes of p
and g (by adding zeroes in the lower right-hand corner) so that they have
the same size N x N and are conjugate under the group of invertible N x N
matrices over R, GL(N, R).

Proof. The condition is sufficient since if u € GL(N, R) and upu™! = ¢,
then right multiplication by « induces an isomorphism from RV¥q to RV p.
So the problem is to prove necessity of the condition. Suppose pisn x n
and g is m x m, and R"p = R™q. We can extend an isomorphism «a :
R™p — R™q to an R-module homomorphism R" — R™ by taking o = 0
on the complementary module R*(1 — p), and by viewing the image R™q
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as embedded in R™. Simijlarly extend =! to an R-module homomorphism
B : R™ — R™ which is 0 on R™(1 — ¢). Once we've done this, « is given
by right multiplication by an n x m matrix a, and 8 is given by right
multiplication by an m x n matrix b. We also have the relations ab = D,
ba = ¢, a = pa = ag, b = gb = bp. The trick is now to take N = n +m and

to observe that 2
1-p a _ (1 0
b 1-¢q/ “\0 1

{(with usual block matrix notation) and that
1—-p a p O l1—-p a
b 1-g¢ 0 0 b 1—gq
_{1-p a 0 ay_(0 O
- b 1-gq 0 0/ \0 ¢/

1—
Thus ( b p 1 f q) is invertible and conjugates p®0 to 0®q. The latter
is of course conjugate to ¢ @ 0 by a permutation matrix. O
Now we can give a simple description of Proj R.

1.2.2. Definition. Let R be a ring. Denote by M(n, R) the collection of
n X n matrices over R and by GL(n, R) the group of n X n matrices over

R. We embed M(n, R) in M(n + 1, R) by a — g g

unital ring homomorphism) and GL(n, R) in GL(n + 1, R) by the group
a 0). Denote by M(R) and GL(R) the infinite

(this is a non-

homomorphism a —» 0 1

unions of the the M(n, R), resp. GL(n, R). Note that M(R) is a ring
without unit and GL(R) is a group. It is important to remember that
each matrix in M(R) has finite size. Let Idem(R) be the set of idempotent
matrices in M(R), and note that GL(R) acts on Idem(R) by conjugation.

Now we can restate Lemma 1.2.1.
1.2.3. Theorem. For any ring R, Proj R may be identified with the set
of conjugation orbits of GL(R) on ldem(R). The semigroup operation is

induced by (p, q) — (g 2 . (One only has commutativity and associa-

tivity after passage to conjugacy classes.) Ko(R) is the Grothendieck group
of this semigroup.

Using this fact we can now show that Kj is invariant under passage from
R to M,(R) and commutes with direct limits. We will also construct an
example of a ring for which Ky vanishes.

1.2.4. Theorem (*“Morita invariance”). For any ring R and any pos-
itive integer n, there is a natural isomorphism Ko(R) = Ko(M,(R)).
Proof. Via the usual identification of My (M, (R)) with M. (R),
Idem(M,(R)) = Idem(R) and GL(M,(R))= GL(R).




