~ NONLINEAR

PHYSICAL
SCIENCE

Hamiiwmnian
Chaos Beyond the
KAM Theory

Dedicated to George M. Zaslavsky (1935-2008)

B KAM iR Z iR

EEEEEEEEEEEEEEEEEEEE



Albert C.J. Luo
Valentin Afraimovich

Editors

Hamiltonian
Chaos Beyond the
KAM Theory

Dedicated to George M. Zaslavsky (1935-2008)

I KAM B8 s S ifiR b

{"?;;;;1‘&, g ROAN I ‘3,%1@@;{@ Hsfs?g%iggz

ﬁ BEHEHERM bR

HIGHER EDUCATION PRESS  BEMING



Editors

Albert C.J. Luo Valentin Afraimovich

Department of Mechanical and Industrial Engineering ~ [ICO-UASLP, Av. Karakorum 1470
Southern Illinois University Edwardsville Lomas 4a Seccion, San Luis Potosi
Edwardsville, IL 62026-1805, USA SLP 78210, Mexico

E-mail: aluo@siue.edu E-mail: valentin@cactus.iico.uaslp.mx

(© 2010 Higher Education Press, 4 Dewai Dajie, 100120, Beijing, P.R. China

EH &M% B (CIP) B8

i KAM Hit 9 F§[E i = Hamiltonian Chaos
Beyond the KAM Theory : 3530/ BEik. (2 ) M3
%4 (Afraimoyich,V. ) % —IJb 5T BSHE R
2010.6

GEZRMYIRRE 1 DEE, (Fd) PEfekta)

ISBN 978-7-04-029187-2

[.O#-- 1. OF---Qm--- WM. O HFHEG-

X V. ®o151.21

o A B B AE CIP BB F (2010) 5 074057 &

RUME Iw  RESE Iwd  HEEH sas
HEEX A& XK FENH B4t
HIRET BEABLRE MBHBME 010-58581118

# 0 o ETHERKES KR4S RBEE  400-810-0598
HBEIZ4ES 100120 =4 H#t http://'www.hep.edu.cn

_ http://www.hep.com.cn
& Pl 010-58581000 M _EiT®  http://www.landraco.com
P = http://www.landraco.com.cn
2 ¥ KeHhHEEBRITARAA : .
- B BN TR RIS A R WmEHE hip//www.widedu.com
7 & 787x1092 1/16
2] ¥ 1975 o & 2010%E6 A 1R
F 8 330000 Bl & 20104 6 A% 1 RENRI
i 4 E #ft 68.00 T

APIMART . BT, BRASHEEE, 5550 E S E 15 R R,
IR E S8R
WS 29187-00

Sales only inside the mainland of China

{ OURR T AR 3t X 4 }



Preface

George M. Zaslavsky was born in Odessa, Ukraine in 1935 in a family of an artillery
officer. He received education at the University of Odessa and moved in 1957 to
Novosibirsk, Russia. In 1965, George joined the Institute of Nuclear Physics where
he became interested in nonlinear problems of accelerator and plasma physics.
Roald Sagdeev and Boris Chirikov were those persons who formed his interest in
the theory of dynamical chaos. In 1968 George introduced a separatrix map that
became one of the major tools in theoretical study of Hamiltonian chaos. The work
“Stochastical instability of nonlinear oscillations” by G. Zaslavsky and B. Chirikov,
published in Physics Uspekhi in 1971, was the first review paper “opened the eyes”
of many physicists to power of the theory of dynamical systems and modern ergodic
theory. It was realized that very complicated behavior is possible in dynamical sys-
tems with only a few degrees of freedom. This complexity cannot be adequately
described in terms of individual trajectories and requires statistical methods. Typi-
cal Hamiltonian systems are not integrable but chaotic, and this chaos is not homo-
geneous. At the same values of the control parameters, there coexist regions in the
phase space with regular and chaotic motion. The results obtained in the 1960s were
summarized in the book “Statistical Irreversibility in Nonlinear Systems” (Nauka,
Moscow, 1970).

The end of the 1960s was a hard time for George. He was forced (o leave the
Institute of Nuclear Physics in Novosibirsk for signing letters in defense of some
Soviet dissidents. George got a position at the Institute of Physics in Krasnoyarsk,
not far away from Novosibirsk. There he founded a laboratory of the theory of non-
linear processes which exists up to now. In Krasnoyarsk George became interested
in the theory of quantum chaos. The first rigorous theory of quantum resonance was
developed in 1977 in collaboration with his co-workers. They introduced the impor-
tant notion of quantum break time (the Ehrenfest time) after which quantum evolu-
tion began to deviate from a semiclassical one. The results obtained in Krasnoyarsk
were summarized in the book “Chaos in Dynamical Systems” (Nauka, Moscow and
Harwood, Amsterdam, 1985).

In 1984, R. Sagdeev invited George to the Institute of Space Research in Moscow.
There he has worked on the theory of degenerate and almost degenerate Hamilto-
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nian systems, anomalous chaotic transport, plasma physics, and theory of chaos in
waveguides. The book “Nonlinear Physics: from the Pendulum to Turbulence and
Chaos” (Nauka, Moscow and Harwood, New York, 1988), written with R. Sagdeeyv,
has been a classical textbook for everybody who studies chaos theory. When study-
ing interaction of a charged particle with a wave packet, George with colleagues
from the Institute discovered that stochastic layers of different separatrices in de-
generated Hamiltonian systems may merge producing a stochastic web. Unlike the
famous Arnold diffusion in non-degenerated Hamiltonian systems, that appears only
if the number of degrees of freedom exceeds 2. diffusion in the Zaslavsky webs
is possible at one and half degrees of freedom. This diffusion is rather universal
phenomenon and its speed is much greater than that of Arnold diffusion. Beauti-
ful symmetries of the Zaslavsky webs and their properties in different branches of
physics have been described in the book “Weak chaos and Quasi-Regular Struc-
tures” (Nauka, Moscow, 1991 and Cambridge University Press, Cambridge, 1991)
coauthored with R. Sagdeev, D. Usikov and A. Chernikov.

In 1991, George emigrated to the USA and became a Professor of Physics and
Mathematics at Physical Department of the New York University and at the Courant
Institute of Mathematical Sciences. The last 17 years of his life he devoted to prin-
cipal problems of Hamiltonian chaos connected with anomalous kinetics and frac-
tional dynamics, foundations of statistical mechanics, chaotic advection, quantum
chaos, and long-range propagation of acoustic waves in the ocean. In his New York
period George published two important books on the Hamiltonian chaos: “Physics
of Chaos in Hamiltonian Systems” (Imperial College Press, London, 1998) and
“Hamiltonian chaos and Fractional Dynamics” (Oxford University Press, New York,
2005). His last book “Ray and wave chaos in ocean acoustics: chaos in waveguides”
(World Scientific Press, Singapore, 2010), written with D. Makarov, S. Prants, and
A. Virovlynsky, reviews original results on chaos with acoustic waves in the under-
water sound channel.

George was a very creative scientist and a very good teacher whose former stu-
dents and collaborators are working now in America, Europe and Asia. He authored
and co-authored 9 books and more than 300 papers in journals. Many of his works
are widely cited. George worked hard all his life. He loved music, theater, literature
and was an expert in good vines and food. Only a few people knew that he loved
to paint. In the last years he has spent every summer in Provence, France working,
writing books and papers and painting in water-colors. The album with his water-
colors was issued in 2009 in Moscow.

George Zaslavsky was one of the key persons in the theory of dynamical chaos
and made many important contributions to a variety of other subjects. His books and
papers influenced very much in advancing modern nonlinear science.

Sergey Prants
Albert C.J. Luo
Valentin Afraimovich

March, 2010
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Chapter 1

Stochastic and Resonant Layers in Nonlinear
Hamiltonian Systems

Albert C.J. Luo

Abstract In this chapter, stochastic and resonant layers in 2-dimensional nonlinear
Hamiltonian systems are presented. The chaos in the stochastic layer is formed by
the primary resonance interaction in nonlinear Hamiltonians systems. However, the
chaos in the resonant layer is formed by the sub-resonance interaction. The chapter
presented herein is to memorize Professor George M. Zaslavsky for his contribu-
tions in stochastic layers.

1.1 Introduction

The modern theory of dynamics originates from Poincaré’s qualitative analysis.
Poincaré (1892) discovered that the motion of nonlinear a coupled oscillator is sen-
sitive to the initial condition, and qualitatively presented that the inherent character-
istics of the motion in the vicinity of unstable fixed points of nonlinear oscillation
systems may be stochastic under regular applied forces. In addition, Poincaré de-
veloped the perturbation theory for periodic motions in planar dynamical systems.
Birkhoff (1913) continued Poincaré’s work, and provided a proof of Poincaré’s ge-
ometric theorem. Birkhoff (1927) showed that both stable and unstable fixed points
of nonlinear oscillation systems with 2-degrees of freedom must exist whenever
their frequency ratio (or called resonance) is rational. The sub-resonances in peri-
odic motions of such systems change the topological structures of phase trajectories,
and the island chains are obtained when the dynamical systems renormalized with
fine scales are used. The work of Poincaré and Birkhoff implies that the complexity
of topological structures in phase space exists for nonlinear dynamic systems. The
question is whether the complicated trajectory can fill the entire phase space or not.

Albert C.J. Luo

Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville,
Edwardsville, Illinois 62026-1805, USA, Tel: 618-650-5389, Fax: 618-650-2555,

e-mail: aluo@siue.edu
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The formal and normal forms in the vicinity ot equilibrium are developed through
the Taylor series to investigate the complexity of trajectory in the neighborhood of
the equilibrium. Since the trajectory complexity exists in the vicinity of hyperbolic
points, one focused on investigating the dynamics in such vicinity of hyperbolic
points.

From a topological point of view, Smale’s horseshoe was presented in Smale
(1967). Further, a differentiable dynamical system theory was developed. Such a
theory has been extensively used to interpret the homoclinic tangle phenomenon in
nonlinear dynamics. Smale found the infinite, many periodic motions, and a perfect
minimal Cantor set near a homoclinic motion can be formed. However, Smale’s re-
sults cannot apply to Hamiltonian systems with more than 2-degrees of freedom.
Because the differentiable dynamical system theory is based on the linearization of
dynamical systems at hyperbolic points, it may not be adequate to explain the com-
plexity of chaotic motions in nonlinear dynamical systems. To continue Birkhoff’s
formal stability, Glimm (1963) investigated the formal stability of an equilibrium
(or a periodic solution) of Hamiltonian systems through the rational functions in-
stead of the power series expansion. Such an investigation just gave another kind
of approximation. Though those theories are extensively applied in nonlinear dy-
namical systems, such analyses based on the formal and normal forms are still the
local analyses in the vicinity of equilibrium. Those theories cannot be applied for
the global behaviors of nonlinear dynamical systems.

To understand the complexity of motion in nonlinear Hamiltonian systems, based
on the non-rigorous theory of perturbation, Kolmogorov (1954) postulated the KAM
theorem. In the KAM theorem, Kolmogorov suggested a procedure which ultimately
led to the stability proof of the periodic solutions of the Hamiltonian systems with
2-degrees of freedom. This problem is intimately connected with the difficulty of
small divisors. The aforementioned theorem was proved under different restrictions
(e.g., Arnold, 1963; Moser, 1962). Further, Arnold (1964) investigated the insta-
bility of dynamical systems with several degrees of freedom, and the diffusion of
motion along the generic separatrix was discussed. The results of Arnold (1964)
extended Kolmogorov’s results to the Hamiltonian system with several degrees of
freedom system. The stability in the sense of Lyapunov cannot be inferred. The
KAM theory is based on the separable oscillators with weak interactions. In fact,
once the perturbation exists, the dynamics of the perturbed Hamiltonian systems
may not be well-behaved to the separable dynamical systems. In physical systems,
the interaction between two oscillators in a nonlinear dynamical system cannot be
very small. The KAM theorem may provide an acceptable prediction only when the
interaction perturbation is very weak. The KAM theory is based on separable, in-
tegrable Hamiltonian systems. In fact, the complexity of motions in non-integrable,
nonlinear Hamiltonian systems is much beyond what the KAM theory stated.

The instability zone (or stochastic layer) of Hamiltonian systems, as investigated
in Arnold (1964), is a domain of chaotic motion in the vicinity of the generic sep-
aratrix. Even if the width of the separatrix splitting was estimated, the dynamics of
the separatrix splitting was not developed. Henon and Heiles (1964) gave a numer-
ical investigation on the nonlinear Hamiltonian systems with 2-degrees of freedom
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in order to determine whether or not a well-behaved constant of the motion exists
for such Hamiltonian Systems. Izrailev and Chirikov (1966) first pointed out that
the periodically forced, nonlinear Hamiltonian system with [-degree of freedom
exhibits a KAM instability leading to the stochastic behavior (or stochastic and res-
onance layers). Walker and Ford (1969) investigated the amplitude instability and
ergodic behavior for nonlinear Hamiltonian systems with 2-degrees of freedom to
develop the verifiable scheme for prediction of the onset of the amplitude instability.
Isolated resonance and double resonance were investigated and the resonance was
determined through the transformed coordinates. Such ergodic behavior in nonlin-
ear Hamiltonian system originates from Birkhoff (1927). In other words, to inves-
tigate the enormous complexity of non-special motions in dynamical systems from
geodesic flows, Birkhoff (1927) presented that the set of non-special motions (or
chaotic motions) is measurable in the sense of Lebesgue, and the set of the special
motions (or regular motion) is of zero measure. Furthermore, the ergodic theory had
been developed in the 20% century and it is as a fundamental base for fractal the-
ory. The thorough study of the geodesic flows in the ergodic theory can be found
in Hopf (1937). Those ideas were generalized by Anosov (1962) to study a class of
differential equations, which can be also referenced to (Sinai,1976). Even though
the ergodic theory is a foundation for fractality of chaotic motions in nonlinear dy-
namical systems, such a theory still cannot provide enough hopes to understand the
complexity of chaotic motions in nonlinear dynamics.

For a nonlinear Hamiltonian system with n-degrees of freedom, it is very dif-
ficult to understand the mechanism of chaotic motions. To date, such a problem
is unsolved. Around (1960) considered extremely simple, nonlinear Hamiltonian
systems to investigate such a mechanism. Melnikov (1962) used the concept in
Poincaré (1892) to investigate the behavior of trajectories of perturbed systems near
autonomous Hamiltonian systems. Melnikov (1963) further investigated the behav-
ior of trajectories of perturbed Hamiltonian systems and the width of the separatrix
splitting were approximately estimated. The width gives the domain of the chaotic
motion in the vicinity of the generic separatrix. Even if the width of the separatix
splitting was approximately estimated, the dynamics of the separatrix splitting was
not developed. From a physical point of view. Chirikov (1960} investigated the reso-
nance processes in magnetic traps, and the resonance overlap was presented initially.
Zaslavsky and Chirikov (1964) discussed the mechanism of 1-dimensional Fermi
acceleration and determined the stochastic property of such a system. Rosenblut et
al. (1966) investigated the appearance of a stochastic instability (or chaotic motion)
of trapped particles in the magnetic field of a traveling wave under a perturbation.
Filonenko et al. (1967) further discussed the destruction of magnetic surface gen-
erated by the resonance harmonics of perturbation. The destruction of such a mag-
netic surface demonstrates the formation and destruction of the resonant surface.
Zaslavsky and Filonenko (1968) gave a systematic investigation of the stochastic
instability of trapped particles through the separatrix map (or whisker motion in
Arnold (1964)), and the fractional equation for diffusion was developed. Zaslavsky
and Chirikov (1972) further presented the stochastic instability of nonlinear oscil-
lations. Chirikov (1979) refined the resonance overlap criterion to predict the onset
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of chaos in stochastic layers. In addition, the most important achievements for pre-
diction of the appearance of chaotic motions were summarized. Escande and Doveil
(1981) used the resonance overlap concept and gave a criterion through a renor-
malization group method (also see, Escande, 1985). The details for the resonance
overlap theory and renormalization group scheme can be referred to references (e.g.,
Lichtenberg and Lieberman, 1992; Reichl, 1992). Though the resonant overlap cri-
terion can provide a rough prediction of the onset of chaotic motion in the stochastic
layers, the mechanism of the chaotic motion in the stochastic layers still cannot be
fully understood until now.

Luo (1995) proposed the resonance theory for chaotic motions in the vicinity
of generic separatrix in nonlinear Hamiltonian systems (also see, Luo and Han,
2001), and it was asserted that chaotic motions in nonlinear Hamiltonian systems are
caused by the resonant interaction. Furthermore, the mechanism for the formation,
growth and destruction of stochastic layers in nonlinear Hamiltonian systems was
discussed in Luo and Han (2001). In Luo et al. (1999), the resonant webs formed in
the stochastic layer were presented, and it was observed that the webs are similar to
the stochastic layer of the parametrically forced pendulum system. The recent inves-
tigations (e.g., Han and Luo, 1998; Luo, 2001b, ¢, 2002) discovered that the reso-
nance interaction generates the resonant separatrix, and the chaotic motion forms in
vicinity of such a resonant separatrix. The corresponding criteria were presented for
analytical predictions of chaotic motions in 1-DOF nonlinear Hamiltonian systems
with periodic perturbations. The maximum and minimurn energy spectrum methods
were developed for numerical predictions of chaotic motions in nonlinear Hamilto-
nian systems (also see, Luo et al., 1999; and Luo, 2002). The energy spectrum ap-
proach is applicable not only for small perturbations but for the large perturbation.
The recent achievements for stochastic layers in periodically forced Hamiltonians
with 1-degree of freedom were summarized in Luo (2004). Luo (2006a) investi-
gated quasi-periodic and chaotic motions in n-dimensional nonlinear Hamiltonian
systems. The energy spectrum method was systematically presented for arbitrary in-
teractions of the integrable nonlinear Hamiltonian systems. The internal resonance
was discussed analytically for weak interactions, and the chaotic and quasi-periodic
motions can be predicted. From a theory for discontinuous dynamical system in
Luo (2006b), Luo (2007a) presented a general theory for n-dimensional nonlinear
dynamical systems. The global tangency and transversality to the separatrix were
discussed from the first integral quantity. The first integral quantity increment was
introduced to investigate the periodic and chaotic flows. In this chapter, only the
stochastic and resonant layers in nolinear Hamilton systems will be presented. For
more materials, readers can refer to Luo (2008).

1.2 Stochastic layers

In this section, the stochastic layers in nonlinear Hamiltonian systems will be de-
scribed geometrically, and the approximate criterions for onset and destruction of
the stochastic layers will be presented.
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1.2.1 Geometrical description

Consider a 2-dimensional Hamiltonian system with a time periodically perturbed
vector field, i.e.,

x = f(x,0) + ug(x,t,m); x = (x,y)T € R?, (1.1

where f(x, ) is an unperturbed Hamiltonian vector field on R? and g(x,?) is a peri-
odically perturbed vector field with period T’ = 27/, and

f(xdl) = (fl (X,H)afz(X,H))T and g(xatvn) = (gl(x,l,ﬂ),gz(x7t,1t))T (1.2)

are sufficiently smooth (C",r > 2) and bounded on a bounded set D C R? in
phase space. fi = dHo(x,y)/dy, f» = —dHo(x,y)/dx;g1 = 0H)(x,y,Q)/0y,82 =
—dH,(x,y,Qt)/dx. If the perturbation (or forcing term) g(x,¢) vanishes, Equation
(1.1) reduces to a 2-dimensional autonomous system x = f(x, L) corresponding to a
1-degree of freedom system in nonlinear Hamiltonian systems. Therefore the total
Hamiltonian of Eq. (1.1) can be expressed by

H(x,y,t,p) = Ho (x,y,0) + Hy (x,y,Qt, &), (1.3)

with excitation frequency Q and strength u of the perturbed Hamiltonian
Hi(x,y,t,%t) as well. For comparison with the other approximate analysis, such a
perturbation parameter is introduced herein. The Hamiltonian of the integrable sys-
tem in Eq. (1.1) is Ho(x,y,}). Once the initial condition is given, the Hamiltonian
Hy(x,y) is invariant (i.e., Ho(x,y,p) = E), which is the first integral manifold.

To restrict this investigation to the 2-dimensional stochastic layer, four assump-
tions for Eq.(1.1) are introduced as follows:

(H1) The unperturbed system of Eq.(1.1) possesses a bounded, closed separatrix
qo(t) with at least one hyperbolic point pg : (X4, Yp).-

(H2) The neighborhood of go(¢) for the point pg : {x4,ys) is filled with at least three
families of periodic orbits g4 () (0 = o, §,7) with &, B, 7 € (0,1].

(H3) For the Hamiltonian energy Eg of g4 (1), its period T; is a differentiable func-
tion of Eg.

(H4) The perturbed system of Eq.(1.1) possesses a perturbed orbit g(¢) in the neigh-
borhood of the unperturbed separatrix go(t).

From the foregoing hypothesis, the phase portrait of the unperturbed Hamiltonian
system in the vicinity of the separatrix is sketched in Fig.1.1. The following point
sets and the corresponding Hamiltonian energy are introduced, i.e.,

To = {(xy)|(x,y) € qu(t), t € R}U{po} and Eo = Ho(qo (1)) ~ (1.4)

for the separatrix,
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Fo ={(x,y)|(x,y) €95(t), t e R} and Ec = Hp (g0 (?)) (1.5)
for the unperturbed,o-periodic orbit and

I'={(x,y)|(x,y)€q(t),t €R} and E =Hp(gq(t)) (1.6)

for the perturbed orbit g(z).

The Hamiltonian energies in Egs. (1.4) and (1.5) are constant for any periodic
orbit of the unperturbed system but the Hamiltonian energy in Eq. (1.6) varies
with (x,y) € g(¢) of the perturbed system. Note that the unperturbed Hamiltonian
Hoy(gs(r)) (o =a,B,y) and Hy(qo(t)) are C” (r > 2) smooth in Luo and Han (2001).
The hypotheses (H2)-(H3) imply that Ty — e monotonically as ¢ — 0 (i.e., the pe-
riodic orbit g4 () approaches to go() as ¢ — 0).

The 8-sets of the first integral quantity (or the energy) of the unperturbed Eq.
(1.1)in Ty (0 = a, B, 7), are defined as

NS (Eo) = {Es||Es — Eo| < 8, for small §5 > 0} .7
and the union of the three 8-sets with Eg is
N (Eo) = |J NG (Eo) U{Eo}. (1.8)

For some time ¢, there is a point Xg = (xg(t),vs(f))" on the orbit g5(t) and this
point is also on the normal £ (xo) = (— f2(X¢), f1 (x0)) Tof the tangential vector of
the separatrix go(¢) at a point xg = (xo(),y0())", as shown in Fig. 1.2. Therefore,
the distance is defined as

Fig. 1.1 The phase portrait of the unperturbed system of Eq. (1.1) near a hyperbolic point p,. go{)
is a separatrix going through the hyperbolic point and splitting the phase into three parts near the
hyperbolic point, and the corresponding orbits g (1) are termed the o-orbit (o = {a, B,7}).



